首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, multi‐switching combination–combination synchronization scheme has been investigated between a class of four non‐identical fractional‐order chaotic systems. The fractional‐order Lorenz and Chen's systems are taken as drive systems. The combination–combination of multi drive systems is then synchronized with the combination of fractional‐order Lü and Rössler chaotic systems. In multi‐switching combination–combination synchronization, the state variables of two drive systems synchronize with different state variables of two response systems simultaneously. Based on the stability of fractional‐order chaotic systems, the multi‐switching combination–combination synchronization of four fractional‐order non‐identical systems has been investigated. For the synchronization of four non‐identical fractional‐order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

3.
A k‐critical (multi‐) graph G has maximum degree k, chromatic index χ′(G) = k + 1, and χ′(Ge) < k + 1 for each edge e of G. For each k ≥ 3, we construct k‐critical (multi‐) graphs with certain properties to obtain counterexamples to some well‐known conjectures. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 27–36, 1999  相似文献   

4.
Hysteresis operators have recently proved to be a powerful tool in modelling phase transition phenomena which are accompanied by the occurrence of hysteresis effects. In a series of papers, the present authors have proposed phase‐field models in which hysteresis non‐linearities occur at several places. A very important class of hysteresis operators studied in this connection is formed by the so‐called PrandtlIshlinskii operators. For these operators, the corresponding phase‐field systems are in the multi‐dimensional case only known to admit unique solutions if the characteristic convex sets defining the operators are polyhedrons. In this paper, we use approximation techniques to extend the known results to multi‐dimensional Prandtl–Ishlinskii operators having non‐polyhedral convex characteristicsets. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
To explore the impact of pest‐control strategy through a fractional derivative, we consider three predator‐prey systems by simple modification of Rosenzweig‐MacArthur model. First, we consider fractional‐order Rosenzweig‐MacArthur model. Allee threshold phenomena into pest population is considered for the second case. Finally, we consider additional food to the predator and harvesting in prey population. The main objective of the present investigation is to observe which model is most suitable for the pest control. To achieve this goal, we perform the local stability analysis of the equilibrium points and observe the basic dynamical properties of all the systems. We observe fractional‐order system has the ability to stabilize Rosenzweig‐MacArthur model with low pest density from oscillatory state. In the numerical simulations, we focus on the bistable regions of the second and third model, and we also observe the effect of the fractional order α throughout the stability region of the system. For the third model, we observe a saddle‐node bifurcation due to the additional food and Allee effect to the pest densities. Also, we numerically plot two parameter bifurcation diagram with respect to the harvesting parameter and fractional order of the system. We finally conclude that fractional‐order Rosenzweig‐MacArthur model and the modified Rosenzweig‐MacArthur model with additional food for the predator and harvested pest population are more suitable models for the pest management.  相似文献   

6.
This paper concentrates on the global synchronization of the fractional‐order multi‐linked complex network (FMCN) via periodically intermittent control. It should be stressed that periodically intermittent control is employed to the FMCN for the first time. Moreover, the network is defined on digraphs with different weights, and two situations on topological structure of the network are discussed, including each digraph being strongly connected, and the biggest one being strongly connected. Based on Lyapunov method and graph theory, some synchronization criteria are obtained under two situations. And, the obtained synchronization criteria have a close relationship with the order of fractional‐order derivative, coupling strength, control gain, control rate, and control period. Besides, for practicability, theoretical results are applied to studying the synchronization of fractional‐order multi‐linked chaotic systems, and some sufficient conditions are provided. For a special case, fractional‐order multi‐linked Lorenz chaotic systems, numerical simulations are given to indicate the feasibility of theoretical results and the effectiveness of control strategy.  相似文献   

7.
This article deals with the problem of synchronization of fractional‐order memristor‐based BAM neural networks (FMBNNs) with time‐delay. We investigate the sufficient conditions for adaptive synchronization of FMBNNs with fractional‐order 0 < α < 1. The analysis is based on suitable Lyapunov functional, differential inclusions theory, and master‐slave synchronization setup. We extend the analysis to provide some useful criteria to ensure the finite‐time synchronization of FMBNNs with fractional‐order 1 < α < 2, using Mittag‐Leffler functions, Laplace transform, and linear feedback control techniques. Numerical simulations with two numerical examples are given to validate our theoretical results. Presence of time‐delay and fractional‐order in the model shows interesting dynamics. © 2016 Wiley Periodicals, Inc. Complexity 21: 412–426, 2016  相似文献   

8.
In this paper, by incorporating latencies for both human beings and female mosquitoes to the mosquito‐borne diseases model, we investigate a class of multi‐group dengue disease model and study the impacts of heterogeneity and latencies on the spread of infectious disease. Dynamical properties of the multi‐group model with distributed delays are established. The results showthat the global asymptotic stability of the disease‐free equilibrium and the endemic equilibrium depends only on the basic reproduction number. Our proofs for global stability of equilibria use the classical method of Lyapunov functions and the graph‐theoretic approach for large‐scale delay systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, we integrate both density‐dependent diffusion process and Beddington–DeAngelis functional response into virus infection models to consider their combined effects on viral infection and its control. We perform global analysis by constructing Lyapunov functions and prove that the system is well posed. We investigated the viral dynamics for scenarios of single‐strain and multi‐strain viruses and find that, for the multi‐strain model, if the basic reproduction number for all viral strains is greater than 1, then each strain persists in the host. Our investigation indicates that treating a patient using only a single type of therapy may cause competitive exclusion, which is disadvantageous to the patient's health. For patients infected with several viral strains, the combination of several therapies is a better choice. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
An Adini‐Q1P3 finite element method is introduced to solve general elastic multi‐structure problems, where displacements on bodies, longitudinal displacements on plates, longitudinal displacements and rotational angles on rods are discretized by conforming linear (bilinear or trilinear) elements, and transverse displacements on plates and rods are discretized by Adini elements and Hermite elements of third order, respectively. The unique solvability and optimal error estimates in the energy norm are established for the discrete method, whose numerical performance is illustrated by some numerical examples. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1092–1112, 2011  相似文献   

11.
This paper concerns measure‐valued solutions for the two‐dimensional granular avalanche flow model introduced by Savage and Hutter. The system is similar to the isentropic compressible Euler equations, except for a Coulomb–Mohr friction law in the source term. We will partially follow the study of measure‐valued solutions given by DiPerna and Majda. However, due to the multi‐valued nature of the friction law, new more sensitive measures must be introduced. The main idea is to consider the class of x‐dependent maximal monotone graphs of non‐single‐valued operators and their relation with 1‐Lipschitz, Carathéodory functions. This relation allows to introduce generalized Young measures for x‐dependent maximal monotone graph. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, we study the Drude models of Maxwell's equations in three‐dimensional metamaterials. We derive new global energy‐tracking identities for the three dimensional electromagnetic problems in the Drude metamaterials, which describe the invariance of global electromagnetic energy in variation forms. We propose the time second‐order global energy‐tracking splitting FDTD schemes for the Drude model in three dimensions. The significant feature is that the developed schemes are global energy‐preserving, unconditionally stable, second‐order accurate both in time and space, and computationally efficient. We rigorously prove that the new schemes satisfy these energy‐tracking identities in the discrete form and the discrete variation form and are unconditionally stable. We prove that the schemes in metamaterials are second order both in time and space. The superconvergence of the schemes in the discrete H1 norm is further obtained to be second order both in time and space. Their approximations of divergence‐free are also analyzed to have second‐order accuracy both in time and space. Numerical experiments confirm our theoretical analysis results. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 763–785, 2017  相似文献   

13.
14.
In this study, new high‐order backward semi‐Lagrangian methods are developed to solve nonlinear advection–diffusion type problems, which are realized using high‐order characteristic‐tracking strategies. The proposed characteristic‐tracking strategies are second‐order L‐stable and third‐order L(α)‐stable methods, which are based on a classical implicit multistep method combined with a error‐correction method. We also use backward differentiation formulas and the fourth‐order finite‐difference scheme for diffusion problem discretization in the temporal and spatial domains, respectively. To demonstrate the adaptability and efficiency of these time‐discretization strategies, we apply these methods to nonlinear advection–diffusion type problems such as the viscous Burgers' equation. Through simulations, not only the temporal and spatial accuracies are numerically evaluated but also the proposed methods are shown to be superior to the compared existing characteristic‐tracking methods under the same rates of convergence in terms of accuracy and efficiency. Finally, we have shown that the proposed method well preserves the energy and mass when the viscosity coefficient becomes zero.  相似文献   

15.
This paper proposes a new model that generalizes the linear sliding window system to the case of multiple failures. The considered k ‐within‐ m ‐from‐ r / n sliding window system consists of n linearly ordered multi‐state elements and fails if at least k groups out of m consecutive groups of r consecutive multi‐state elements have cumulative performance lower than the demand W . A reliability evaluation algorithm is suggested for the proposed system. In order to increase the system availability, maintenance actions can be performed, and the elements can be optimally allocated. A joint element allocation and maintenance optimization model is formulated with the objective of minimizing the total maintenance cost subjected to the pre‐specified system availability requirement. Basic procedures of genetic algorithms are adapted to solve the optimization problem. Numerical experiments are presented to illustrate the applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
For a fixed (multi)graph H, a graph G is H‐linked if any injection f: V(H)→V(G) can be extended to an H‐subdivision in G. The notion of an H ‐linked graph encompasses several familiar graph classes, including k‐linked, k‐ordered and k‐connected graphs. In this article, we give two sharp Ore‐type degree sum conditions that assure a graph G is H ‐linked for arbitrary H. These results extend and refine several previous results on H ‐linked, k‐linked, and k‐ordered graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:69–77, 2012  相似文献   

17.
A graph is YΔY‐reducible if it can be reduced to a vertex by a sequence of series‐parallel reductions and YΔY‐transformations. Terminals are distinguished vertices, that cannot be deleted by reductions and transformations. In this article, we show that four‐terminal planar graphs are YΔY‐reducible when at least three of the vertices lie on the same face. Using this result, we characterize YΔY‐reducible projective‐planar graphs. We also consider terminals in projective‐planar graphs, and establish that graphs of crossing‐number one are YΔY‐reducible. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 83–93, 2000  相似文献   

18.
In this paper, an iterative solution method for a fourth‐order accurate discretization of the Helmholtz equation is presented. The method is a generalization of that presented in (SIAM J. Sci. Comput. 2006; 27 :1471–1492), where multigrid was employed as a preconditioner for a Krylov subspace iterative method. The multigrid preconditioner is based on the solution of a second Helmholtz operator with a complex‐valued shift. In particular, we compare preconditioners based on a point‐wise Jacobi smoother with those using an ILU(0) smoother, we compare using the prolongation operator developed by de Zeeuw in (J. Comput. Appl. Math. 1990; 33 :1–27) with interpolation operators based on algebraic multigrid principles, and we compare the performance of the Krylov subspace method Bi‐conjugate gradient stabilized with the recently introduced induced dimension reduction method, IDR(s). These three improvements are combined to yield an efficient solver for heterogeneous problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This study considers the problem of control and synchronization between fractional‐order and integer‐order, N‐components reaction‐diffusion systems with nonidentical coefficients and different nonlinear parts. The control scheme is designed using the Lyapunov direct method. The results are exemplified by two significant biochemical models, namely, the fractional‐order Lengyel‐Epstein model and the Gray‐Scott model. To illustrate the effectiveness of the proposed scheme, numerical simulations are performed in one and two space dimensions using Homotopy Analysis Method (HAM).  相似文献   

20.
One‐dimensional models of gravity‐driven sedimentation of polydisperse suspensions with particles that belong to N size classes give rise to systems of N strongly coupled, nonlinear first‐order conservation laws for the local solids volume fractions. As the eigenvalues and eigenvectors of the flux Jacobian have no closed algebraic form, characteristic‐wise numerical schemes for these models become involved. Alternative simple schemes for this model directly utilize the velocity functions and are based on splitting the system of conservation laws into two different first‐order quasi‐linear systems, which are solved successively for each time iteration, namely, the Lagrangian and remap steps (so‐called Lagrangian‐remap [LR] schemes). This approach was advanced in (Bürger, Chalons, and Villada, SIAM J Sci Comput 35 (2013), B1341–B1368) for a multiclass Lighthill–Whitham‐Richards traffic model with nonnegative velocities. By incorporating recent antidiffusive techniques for transport equations a new version of these Lagrangian‐antidiffusive remap (L‐AR) schemes for the polydisperse sedimentation model is constructed. These L‐AR schemes are supported by a partial analysis for N = 1. They are total variation diminishing under a suitable CFL condition and therefore converge to a weak solution. Numerical examples illustrate that these schemes, including a more accurate version based on MUSCL extrapolation, are competitive in accuracy and efficiency with several existing schemes. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1109–1136, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号