首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the dynamics implied by the Chamley (1993) model, a variant of the two-sector model with an implicit characterization of the learning function. We first show that under some “regularity” conditions regarding the learning function, the model has (a) one steady state, (b) no steady states or (c) two steady states (one saddle and one non-saddle). Moreover, via the Bogdanov–Takens theorem, we prove that for critical regions of the parameters space, the dynamics undergoes a particular global phenomenon, namely the homoclinic bifurcation. Because these findings imply the existence of a continuum of equilibrium trajectories, all departing from the same initial value of the predetermined variable, the model exhibits global indeterminacy.  相似文献   

2.
A proposed discretized form of fractional‐order prey‐predator model is investigated. A sufficient condition for the solution of the discrete system to exist and to be unique is determined. Jury stability test is applied for studying stability of equilibrium points of the discretized system. Then, the effects of varying fractional order and other parameters of the systems on its dynamics are examined. The system undergoes Neimark‐Sacker and flip bifurcation under certain conditions. We observe that the model exhibits chaotic dynamics following stable states as the memory parameter α decreases and step size h increases. Theoretical results illustrate the rich dynamics and complexity of the model. Numerical simulation validates theoretical results and demonstrates the presence of rich dynamical behaviors include S‐asymptotically bounded periodic orbits, quasi‐periodicity, and chaos. The system exhibits a wide range of dynamical behaviors for fractional‐order α key parameter.  相似文献   

3.
We show a scenario of a two-frequency torus breakdown, in which a global bifurcation occurs due to the collision of a quasi-periodic torus T2 with saddle points, creating a heteroclinic saddle connection. We analyze the geometry of this torus-saddle collision by showing the local dynamics and the invariant manifolds (global dynamics) of the saddle points. Moreover, we present detailed evidences of a heteroclinic saddle-focus orbit responsible for the type-II intermittency induced by this global bifurcation. We also characterize this transition to chaos by measuring the Lyapunov exponents and the scaling laws.  相似文献   

4.
We present an analysis for minimizing the condition number of nonsingular parameter‐dependent 2 × 2 block‐structured saddle‐point matrices with a maximally rank‐deficient (1,1) block. The matrices arise from an augmented Lagrangian approach. Using quasidirect sums, we show that a decomposition akin to simultaneous diagonalization leads to an optimization based on the extremal nonzero eigenvalues and singular values of the associated block matrices. Bounds on the condition number of the parameter‐dependent matrix are obtained, and we demonstrate their tightness on some numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We study a system of three limit cycle oscillators which exhibits two stable steady states. The system is modeled by both phase-only oscillators and by van der Pol oscillators. We obtain and compare the existence, stability and bifurcation of the steady states in these two models. This work is motivated by application to the design of a machine which can make decisions by identifying a given initial condition with its associated steady state.  相似文献   

6.
Abstract The study of three‐species communities have become the focus of considerable attention, and because the studies of ecological communities start with their food web, we consider a tritrophic food chain model comprised of the prey, the predator, and the super‐predator. The classical assumption of the domino effect is supplemented with an adaptive parameter for the predator (in the absence of prey). Thus, the model exhibits an equilibrium with the predator‐top‐predator steady state, which is a saddle point. Dynamical behaviors such as boundedness, existence of periodic orbits, persistence, as well as stability are analyzed. The long‐term coexistence of the three interacting species is addressed, and the stability analysis of the model shows that the biologically most relevant equilibrium point is globally asymptotically stable whenever it satisfies a certain criterion. Practical implications are explored and related to real populations.  相似文献   

7.
The local stability, steady state comparative statics, and local comparative dynamics of symmetric open-loop Nash equilibria for the ubiquitous class of discounted infinite horizon differential games are investigated. It is shown that the functional forms and values of the parameters specified in a differential game are crucial in determining the local stability of a steady state and, in turn, the steady state comparative statics and local comparative dynamics. A simple sufficient condition for a steady state to be a local saddle point is provided. The power and reach of the results are demonstrated by applying them to two well-known differential games.  相似文献   

8.
The stability of a size-structured population dynamics model of Daphnia coupled with the dynamics of an unstructured algal food source is investigated for the case where there is also an inflow of newborns from an external source. We determine the steady states and study the stability of the nontrivial steady states. We also identify a demographic-algae parameter that determines a condition for the stability.  相似文献   

9.
The viscous quantum hydrodynamic model derived for semiconductor simulation is studied in this paper. The principal part of the vQHD system constitutes a parameter‐elliptic operator provided that boundary conditions satisfying the Shapiro–Lopatinskii criterion are specified. We classify admissible boundary conditions and show that this principal part generates an analytic semigroup, from which we then obtain the local in time well‐posedness. Furthermore, the exponential stability of zero current and large current steady states is proved, without any kind of subsonic condition. The decay rate is given explicitly. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We study the Glauber dynamics for the Ising model on the complete graph, also known as the Curie–Weiss Model. For β < 1, we prove that the dynamics exhibits a cut-off: the distance to stationarity drops from near 1 to near 0 in a window of order n centered at [2(1 ? β)]?1 n log n. For β = 1, we prove that the mixing time is of order n 3/2. For β > 1, we study metastability. In particular, we show that the Glauber dynamics restricted to states of non-negative magnetization has mixing time O(n log n).  相似文献   

11.
In this paper, the global properties of a class of human immunodeficiency virus (HIV) models with Beddington–DeAngelis functional response are investigated. Lyapunov functions are constructed to establish the global asymptotic stability of the uninfected and infected steady states of three HIV infection models. The first model considers the interaction process of the HIV and the CD4 + T cells and takes into account the latently and actively infected cells. The second model describes two co‐circulation populations of target cells, representing CD4 + T cells and macrophages. The third model is a two‐target‐cell model taking into account the latently and actively infected cells. We have proven that if the basic reproduction number R0 is less than unity, then the uninfected steady state is globally asymptotically stable, and if R0 > 1, then the infected steady state is globally asymptotically stable. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we consider a generalized predator‐prey system with prey‐taxis under the Neumann boundary condition. We investigate the local and global asymptotical stability of constant steady states (including trivial, semitrivial, and interior constant steady states). On the basis of a priori estimate and the fixed‐point index theory, several sufficient conditions for the nonexistence/existence of nonconstant positive solutions are given.  相似文献   

13.
In this paper, a mathematical model for HIV‐1 infection with antibody, cytotoxic T‐lymphocyte immune responses and Beddington–DeAngelis functional response is investigated. The stability of the infection‐free and infected steady states is investigated. The basic reproduction number R0 is identified for the proposed system. If R0 < 1, then there is an infection‐free steady state, which is locally asymptotically stable. Further, the infected steady state is locally asymptotically stable for R0 > 1 in the absence of immune response delay. We use Nyquist criterion to estimate the length of the delay for which stability continues to hold. Also the existence of the Hopf bifurcation is investigated by using immune response delay as a bifurcation parameter. Numerical simulations are presented to justify the analytical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
We consider the periodic problem for 2‐fluid nonisentropic Euler‐Poisson equations in semiconductor. By choosing a suitable symmetrizers and using an induction argument on the order of the time‐space derivatives of solutions in energy estimates, we obtain the global stability of solutions with exponential decay in time near the nonconstant steady‐states for 2‐fluid nonisentropic Euler‐Poisson equations. This improves the results obtained for models with temperature diffusion terms by using the pressure functions pν in place of the unknown variables densities nν.  相似文献   

15.
In many spatial resource models, it is assumed that an agent is able to harvest the resource over the complete spatial domain. However, agents frequently only have access to a resource at particular locations at which a moving biomass, such as fish or game, may be caught or hunted. Here, we analyze an infinite time‐horizon optimal control problem with boundary harvesting and (systems of) parabolic partial differential equations as state dynamics. We formally derive the associated canonical system, consisting of a forward–backward diffusion system with boundary controls, and numerically compute the canonical steady states and the optimal time‐dependent paths, and their dependence on parameters. We start with some one‐species fishing models, and then extend the analysis to a predator–prey model of the Lotka–Volterra type. The models are rather generic, and our methods are quite general, and thus should be applicable to large classes of structurally similar bioeconomic problems with boundary controls. Recommedations for Resource Managers
  • Just like ordinary differential equation‐constrained (optimal) control problems and distributed partial differential equation (PDE) constrained control problems, boundary control problems with PDE state dynamics may be formally treated by the Pontryagin's maximum principle or canonical system formalism (state and adjoint PDEs).
  • These problems may have multiple (locally) optimal solutions; a first overview of suitable choices can be obtained by identifying canonical steady states.
  • The computation of canonical paths toward some optimal steady state yields temporal information about the optimal harvesting, possibly including waiting time behavior for the stock to recover from a low‐stock initial state, and nonmonotonic (in time) harvesting efforts.
  • Multispecies fishery models may lead to asymmetric effects; for instance, it may be optimal to capture a predator species to protect the prey, even for high costs and low market values of the predators.
  相似文献   

16.
We consider Markovian queueing models with a finite number of states and a product form solution for its steady state probability distribution. Starting from the integral representation for the partition function in complex space we construct error bounds for its asymptotic expansion obtained by the saddle point method. The derivation of error bounds is based on an idea by Olver applicable to integral transforms with an exponentially decaying kernel. The bounds are expressed in terms of the supremum of a certain function and are asymptotic to the absolute value of the first neglected term in the expansion as the large parameter approaches infinity. The application of these error bounds is illustrated for two classes of queueing models: loss systems and single chain closed queueing networks.  相似文献   

17.
An Interactive Markov Chain is a population process in which each individuals's transitions depend on the population's distribution over the various states. We investigate a certain aspect of such process’ dynamics for a fixed population size. Conditions for convergence to steady‐state regardless of population size are provided.  相似文献   

18.
In this paper, a diffusive predator–prey system, in which the prey species exhibits herd behavior and the predator species with quadratic mortality, has been studied. The stability of positive constant equilibrium, Hopf bifurcations, and diffusion‐driven Turing instability are investigated under the Neumann boundary condition. The explicit condition for the occurrence of the diffusion‐driven Turing instability is derived, which is determined by the relationship of the diffusion rates of two species. The formulas determining the direction and the stability of Hopf bifurcations depending on the parameters of the system are derived. Finally, numerical simulations are carried out to verify and extend the theoretical results and show the existence of spatially homogeneous periodic solutions and nonconstant steady states. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper focuses on efficiently solving large sparse symmetric indefinite systems of linear equations in saddle‐point form using a fill‐reducing ordering technique with a direct solver. Row and column permutations partition the saddle‐point matrix into a block structure constituting a priori pivots of order 1 and 2. The partitioned matrix is compressed by treating each nonzero block as a single entry, and a fill‐reducing ordering is applied to the corresponding compressed graph. It is shown that, provided the saddle‐point matrix satisfies certain criteria, a block LDLT factorization can be computed using the resulting pivot sequence without modification. Numerical results for a range of problems from practical applications using a modern sparse direct solver are presented to illustrate the effectiveness of the approach.  相似文献   

20.
We consider the two‐dimensional Vlasov‐Poisson system to model a two‐component plasma whose distribution function is constant with respect to the third space dimension. First, we show how this two‐dimensional Vlasov‐Poisson system can be derived from the full three‐dimensional model. The existence of compactly supported steady states with vanishing electric potential in a three‐dimensional setting has already been investigated in the literature. We show that these results can easily be adapted to the two‐dimensional system. However, our main result is to prove the existence of compactly supported steady states even with a nontrivial self‐consistent electric potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号