首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Positively charged ruthenium nanoparticles were prepared by NaBH(4) reduction at room temperature and at pH values lower than 4.9. The ruthenium nanoparticles were characterized by zeta potential measurement, TEM, XPS, and XRD. Particles with a mean diameter of 1.8 nm and a standard deviation of 0.40 nm could be obtained under the experimental conditions. The surface charge on the particles is believed to originate from hydrated proton adsorption. The positively charged ruthenium nanoparticles could be used as the starting material for further functionalization by PVP, ethylenediamine, and dodecylamine.  相似文献   

2.
《印度化学会志》2023,100(6):101011
A mixture of graphite powder and ruthenium chloride (III) anhydrous was treated at 723 K under 0.3 MPa chlorine for 3 days, followed by reduction under 40 kPa of hydrogen for 1 h to produce ruthenium metal particles intercalated between graphite layers (Ru-GIC). The structures of ruthenium particles depended on the reduction temperatures. Sheet-like ruthenium particles with 1–3 nm thickness and 10 to several hundred nm width containing numerous irregularly shaped holes with round edge, were formed by reduction at 573 K. A Ru-GIC sample treated at 653 K possessed two-dimensional ruthenium nanosheets with hexagonal holes (straight lines intersect at an angle of 120°) in a similar range of thickness and width. On the other hand, Ru-GIC samples reduced at 773 and 823 K showed two-dimensional plate morphology with a thickness of 1–4 nm. In addition, ruthenium nanoparticles supported on the graphite surface (Ru/Gmix) were also prepared from a slurry of ruthenium chloride (III) hydrate and graphite powder by impregnation and hydrogen reduction. The ruthenium particles in Ru/Gmix were spherical at about 3.6 nm, and the reduction temperature did not affect their particles size. Both Ru-GIC and Ru/Gmix samples were evaluated for cinnamaldehyde (CAL) hydrogenation in supercritical carbon dioxide solvent at 323 K, and they were active to produce cinnamyl alcohol (COL) and hydrocinnamaldehyde (HAL). However, Ru-GIC samples showed higher COL selectivity than Ru/Gmix prepared at the same reduction temperature, and COL selectivity over Ru-GIC increased with the reduction treatments at 773 and 823 K.  相似文献   

3.
Carbon-aerogel-supported ruthenium nanoparticles were synthesized by impregnating carbon aerogels with Ru(acac)3 or Ru(cod)(tmhd)2 from supercritical carbon dioxide (scCO2) solutions, followed by thermal reduction of these precursors. Two different carbon aerogels with pore diameters of 4 and 21 nm were synthesized. The kinetics and the thermodynamics of impregnation of carbon aerogels with the ruthenium coordination complexes were studied. The approach-to-equilibrium data indicated very fast adsorption, and the adsorption isotherms were found to follow the Langmuir model. The impregnated carbon aerogel complexes were reduced thermally at different temperatures between 300 and 1000 degrees C in the presence of nitrogen. The resulting nanocomposites were characterized using transmission electron microscopy (TEM) and hydrogen chemisorption. TEM micrographs showed that the ruthenium nanoparticles were dispersed homogeneously throughout the porous carbon aerogel matrix, and the average sizes obtained under different conditions ranged from 1.7 to 3.8 nm. Once complete decomposition of the precursor had been achieved, the mean size of the ruthenium particles increased with increasing reduction temperature.  相似文献   

4.
A novel method has been developed to prepare water-dispersible ethylenediamine (en)-stabilized ruthenium nanoparticles. The procedure involves the reduction of an en-RuCl(3) complex by sodium borohydride. The Ru nanoparticles so prepared are fairly stable in water. TEM imaging shows a mean diameter of about 2.1 nm for the particles and a narrow particle size distribution.  相似文献   

5.
Herein we report the discovery of an in situ generated, highly active nanocatalyst for the room temperature dehydrogenation of dimethylamine-borane in water. The new catalyst system consisting of ruthenium(0) nanoparticles stabilized by the hydrogenphosphate anion can readily and reproducibly be formed under in situ conditions from the dimethylamine-borane reduction of a ruthenium(III) precatalyst in tetrabutylammonium dihydrogenphosphate solution at 25 ± 0.1 °C. These new water dispersible ruthenium nanoparticles were characterized by using a combination of advanced analytical techniques. The results show the formation of well-dispersed ruthenium(0) nanoparticles of 2.9 ± 0.9 nm size stabilized by the hydrogenphosphate anion in aqueous solution. The resulting ruthenium(0) nanoparticles act as a highly active catalyst in the generation of 3.0 equiv. of H(2) from the hydrolytic dehydrogenation of dimethylamine-borane with an initial TOF value of 500 h(-1) at 25 ± 0.1 °C. Moreover, they provide exceptional catalytic lifetime (TTO = 11,600) in the same reaction at room temperature. The work reported here also includes the following results; (i) monitoring the formation kinetics of the in situ generated ruthenium nanoparticles, by using the hydrogen generation from the hydrolytic dehydrogenation of dimethylamine-borane as a catalytic reporter reaction, shows that sigmoidal kinetics of catalyst formation and concomitant dehydrogenation fits well to the two-step, slow nucleation and then autocatalytic surface growth mechanism, A → B (rate constant k(1)) and A + B → 2B (rate constant k(2)), in which A is RuCl(3)·3H(2)O and B is the growing, catalytically active Ru(0)(n) nanoclusters. (ii) Hg(0) poisoning coupled with activity measurements after solution infiltration demonstrates that the in situ generated ruthenium(0) nanoparticles act as a kinetically competent heterogeneous catalyst in hydrogen generation from the hydrolytic dehydrogenation of dimethylamine-borane. (iii) A compilation of kinetic data depending on the temperature and catalyst concentration is used to determine the dependency of reaction rate on catalyst concentration and the activation energy of the reaction, respectively.  相似文献   

6.
Olefin metathesis reactions of carbene-stabilized ruthenium nanoparticles were exploited for the incorporation of multiple functional moieties onto the nanoparticle surface. When the nanoparticles were cofunctionalized with 4-vinylbenzo-18-crown-6 and 1-vinylpyrene, the resulting particles exhibited fluorescence characteristics that were consistent with dimeric pyrene with a conjugated chemical bridge, with three peaks observed in the emission spectra at 391, 410, and 485 nm. The behaviors were ascribed to intraparticle charge delocalization between the pyrene moieties afforded by the conjugated Ru═carbene interfacial linkages. Notably, upon the binding of metal ions in the crown ether cavity, the emission intensity of the nanoparticle fluorescence was found to diminish at 485 nm and concurrently increase at 391 and 410 nm rather markedly, with the most significant effects observed with K(+). This was accounted for by the selective binding of 18-crown-6 to potassium ions, where the positively charged ions led to the polarization of the nanoparticle core electrons that was facililated by the conjugated linkage to the metal surface and hence impeded intraparticle charge delocalization. Control experiments with a pyrene-crown ether conjugate (2) and with ruthenium nanoparticles cofunctionalized with 4-vinylbenzo-18-crown-6 and 1-allylpyrene suggested that the through-bond pathway played a predominant role in the manipulation of intraparticle electronic communication whereas the contributions from simple electrostatic interactions (i.e., through-space pathway) were minimal.  相似文献   

7.
Ruthenium fulleride nanospheres were produced and decorated with small (<1.5 nm) ruthenium nanoparticles. These materials, which present a significant charge transfer from ruthenium to the electron acceptor C60 fullerene, were tested in the hydrogenation of cinnamaldehyde. In alcoholic solvents, very large amounts (≈90%) of acetals were formed, pointing out the high acidity of the Ru sites. The addition of a weak base and the use of methanol as a solvent allow to reach high activity and selectivity toward cinnamyl alcohol, whereas the use of an aprotic and apolar solvent decreases the activity and yields mainly hydrocinnamaldehyde. Density functional theory calculations show that this selectivity shift is not correlated to a specific precoordination of cinnamaldehyde on the ruthenium nanoparticles.  相似文献   

8.
Luminescent ruthenium(II) complex covalently bound silica nanoparticles have been prepared and used as a probe for time-gated luminescence bioimaging. The new nanoparticles were prepared by copolymerization of a luminescent Ru(II) complex tris(5-amino-1,10-phenanthroline)ruthenium(II) conjugated with 3-aminopropyl(triethoxy)silane (APS-Ru conjugate), free (3-aminopropyl)triethoxysilane (APS) and tetraethyl orthosilicate (TEOS) in a water-in-oil reverse microemulsion consisting of Triton X-100, n-octanol, cyclohexane and water in the presence of aqueous ammonia. Characterization by transmission electron microscopy indicates that the nanoparticles are monodisperse, spherical and uniform in size, 64 ± 4 nm in diameter. Compared with the dye-doping nanoparticles, dye leakage of the new nanoparticles was remarkably decreased. In addition, it was found that the Ru(II) complex luminescence could be effectively enhanced with a longer luminescence lifetime (∼2.3 μs) after forming the nanoparticles, which enables the nanoparticles to be suitable as a bioprobe for time-gated luminescence bioimaging applications. The nanoparticle-labeled streptavidin was prepared and successfully used for time-gated luminescence imaging detection of an environmental pathogen, Giardia lamblia, with high specificity and sensitivity.  相似文献   

9.
Marczenko Z  Balcerzak M  Kuś S 《Talanta》1980,27(12):1087-1089
The optimum conditions for preparation of stable solutions of ruthenate and osmate, after alkaline fusion of ruthenium(IV) compounds, ruthenium metal and osmium metal in a silver crucible, have been determined. The molar absorptivities of ruthenate and osmate are 1.74 × 103 1. mole−1.cm−1 at 465 nm (Ru) and 2.75 × 103 1.mole−1.cm−1 at 340 nm (Os) in 2M sodium hydroxide. A differential spectrophotometric method has been developed for determination of ruthenium in ruthenium dioxide, lead ruthenite and bismuth pyroruthenate. Simultaneous spectrophotometric determination is proposed for ruthenium and osmium. The other platinum metals interfere seriously only when present in> 1:1 w/w ratio to Ru.  相似文献   

10.
烯基取代环戊二烯基钌配合物的合成及晶体结构   总被引:1,自引:0,他引:1  
金军挺  黄吉玲  钱延龙 《化学学报》1999,57(9):1043-1046
本文通过环戊二烯基钠(茂钠)与溴丙烯反应制得单取代的环戊二烯,茂钠与氯丙烯得到双取代的环戊二烯。利用这两个配体合成了烯基取代的环戊二烯基(双三苯膦)氯化钌(1,2)并对化合物(2)进行了晶体结构分析。  相似文献   

11.
Stable ruthenium nanoparticles were prepared by the self-assembly of 1-dodecyne onto the "bare" Ru colloid surface. The formation of a Ru-vinylidene (Ru═C═CH-R) interfacial bonding linkage was confirmed by the specific reactivity of the nanoparticles with imine derivatives to form a heterocyclic complex at the metal-ligand interface, as manifested in (1)H and (13)C NMR, photoluminescence, and electrochemical measurements in which a ferrocenyl imine was used as the labeling probe. Notably, the resulting nanoparticles could also undergo olefin metathesis reactions with vinyl-terminated molecules, as exemplified by the functionalization of the nanoparticles with 1-vinylpyrene. In sharp contrast, no reactvity was observed with 1-dodecynide-stabilized ruthenium nanoparticles with either imine or vinyl derivatives, indicating that these (deprotonated) nanoparticles were stabilized instead by the formation of a Ru-C≡ dπ bond at the metal-ligand interface.  相似文献   

12.
Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.  相似文献   

13.
The decomposition of the ruthenium precursor Ru(COD)(COT) (1, COD = 1,5-cyclooctadiene; COT = 1,3,5-cyclooctatriene) in mild conditions (room temperature, 1--3 bar H(2)) in THF leads, in the presence of a stabilizer (polymer or ligand), to nanoparticles of various sizes and shapes. In THF and in the presence of a polymer matrix (Ru/polymer = 5%), crystalline hcp particles of uniform mean size (1.1 nm) homogeneously dispersed in the polymer matrix and agglomerated hcp particles (1.7 nm) were respectively obtained in poly(vinylpyrrolidone) and cellulose acetate. The same reaction, carried out using various concentrations relative to ruthenium of alkylamines or alkylthiols as stabilizers (L = C(8)H(17)NH(2), C(12)H(25)NH(2), C(16)H(33)NH(2), C(8)H(17)SH, C(12)H(25)SH, or C(16)H(33)SH), leads to agglomerated particles (L = thiol) or particles dispersed in the solution (L = amine), both displaying a mean size near 2--3 nm and an hcp structure. In the case of amine ligands, the particles are generally elongated and display a tendency to form worm- or rodlike structures at high amine concentration. This phenomenon is attributed to a rapid amine ligand exchange at the surface of the particle as observed by (13)C NMR. In contrast, the particles stabilized by C(8)H(17)SH are not fluxional, but a catalytic transformation of thiols into disulfides has been observed which involves oxidative addition of thiols on the ruthenium surface. All colloids were characterized by microanalysis, infrared spectroscopy after CO adsorption, high-resolution electron microscopy, and wide-angle X-ray scattering.  相似文献   

14.
Nitric oxide-releasing ruthenium nanoparticles were synthesized by the reaction of alkanethiolate-protected ruthenium nanoparticles with tert-butyl nitrite ((t)BuONO), and their water-soluble derivatives are able to deliver NO to proteins such as reduced myoglobin upon light irradiation in aqueous media.  相似文献   

15.
Ruthenium nanoparticles have been prepared by sonochemical reduction of a ruthenium chloride solution using ultrasound frequencies in the range 20–1056 kHz The reduction was monitored by UV-Vis absorption spectrophotometry. Reduction proceeds sequentially from Ru(III) to Ru(II) to Ru(0) and takes almost 13 h. The Ru particles produced by the ultrasound reduction have diameters between 10 and 20 nm as measured by transmission electron microscope image.  相似文献   

16.
Very stable suspensions of small sized (c.a. 1.2 nm) and homogeneously dispersed ruthenium nanoparticles (RuNPs) were obtained by decomposition, under H(2), of (η(4)-1,5-cyclooctadiene)(η(6)-1,3,5-cyclooctatriene)ruthenium(0), [Ru(COD)(COT)], in various imidazolium derived ionic liquids (ILs: [RMIm][NTf(2)] (R = C(n)H(2n+1) where n = 2; 4; 6; 8; 10) and in the presence of amines as ligands (1-octylamine, 1-hexadecylamine). These nanoparticles were compared to others stabilized either in pure ILs or by the same ligands in THF. NMR experiments ((13)C solution and DOSY) demonstrate that the amines are coordinated to the surface of the RuNPs. These RuNPs were investigated for the hydrogenation of aromatics and have shown a high level of recyclability (up to 10 cycles) with neither loss of activity nor significant agglomeration.  相似文献   

17.
A route to the preparation of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloids by refluxing ruthenium(III) chloride in low boiling point alcohols was developed. Deep purple colloids with shuttle-like ruthenium particles were also synthesized. XPS measurement verified the nanoparticles were in the metallic state. The morphology of metal nanoparticles was characterized by UV-visible absorption spectrophotometry, TEM and XRD.  相似文献   

18.
Gowda HS  Ramappa PG 《Talanta》1976,23(7):552
Diethazine hydrochloride reacts with ruthenium(III) instantaneously at high acidity (sulphuric or hydrochloric acid) to form a red 1:1 complex with absorbance maximum at 515nm. A tenfold molar excess of reagent is necessary for complete complexation. Beer's law is obeyed for 1.0-10.4 ppm of ruthenium(III), with optimum concentration range 2-9 ppm. The molar absorptivity is 5.35 x 10(3) 1.mol(-1) .cm(-1).  相似文献   

19.
<正>Poly(N-vinyl-2-pyrrolidone)(PVP)-stabilized ruthenium nanorods with high aspect ratio by refluxing ruthenium(Ⅲ) chloride in n-propanol have been successfully prepared by means of a facile and rapid microwave heating for the first time.The structure and morphology of the obtained products were characterized by transmission electron microscopy(TEM),select area electron diffraction(SAED),ultraviolet-visible spectrophotometry(UV-vis),X-ray photoelectron spectroscopy(XPS) and Fourier transform spectroscopy(FT-IR).XPS analysis reveals that the nanorods were in the metallic state.TEM images showed that ruthenium nanorods had an obvious one-dimensional structure with the aspect ratio ranged from 5 to 40 nm and length up to 600 nm.SAED patterns indicated that the nanorods were single-crystalline with a hexagonal structure.  相似文献   

20.
Chawla RS  Singh RP  Trikha KC 《Talanta》1971,18(12):1245-1249
Diphenylthiovioluric acid (DPHTVA) reacts with ruthenium(III) to form a complex which has an absorbance maximum at 520 nm. Effects of pH, heating time, buffer and reagent have been studied. DPHTVA has been found to be a sensitive reagent for ruthenium(III) (sensitivity = 0.0044 μg Ru/cm2 for log I0/I = 0.001), and has been made selective by the use of masking agents. The composition of the complex as revealed by different methods is 1:2 (ruthenium:DPHTVA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号