首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过长期记录室内水池环境下两只印太瓶鼻海豚通讯信号,并与海湾自然环境下同样的两只海豚所发出的通讯信号进行比较分析,从信号类型、声谱特征等方面研究生活环境变化下瓶鼻海豚通讯信号的差异性。结果表明,生活环境的差异,会改变瓶鼻海豚通讯信号。海湾自然环境下,瓶鼻海豚通讯信号以正弦型信号为主;而室内水池环境下,上扫型信号比例明显增多,而正弦型信号减少。两种环境下,瓶鼻海豚通讯信号在持续时间、拐点数、起始频率、结束频率、最小频率、最大频率等存在显著性差异(p<0.05),但信号的频率变化量相近(p=0.29)。结果为提高海豚通讯信号认知和增强海豚生物行为研究提供一定的科学参考,同时也为仿生隐蔽通信提供技术支撑。   相似文献   

2.
This paper presents a cross-sectional study testing whether dolphins that are born in aquarium pools where they hear trainers' whistles develop whistles that are less frequency modulated than those of wild dolphins. Ten pairs of captive and wild dolphins were matched for age and sex. Twenty whistles were sampled from each dolphin. Several traditional acoustic features (total duration, duration minus any silent periods, etc.) were measured for each whistle, in addition to newly defined flatness parameters: total flatness ratio (percentage of whistle scored as unmodulated), and contiguous flatness ratio (duration of longest flat segment divided by total duration). The durations of wild dolphin whistles were found to be significantly longer, and the captive dolphins had whistles that were less frequency modulated and more like the trainers' whistles. Using a standard t-test, the captive dolphin had a significantly higher total flatness ratio in 9/10 matched pairs, and in 8/10 pairs the captive dolphin had significantly higher contiguous flatness ratios. These results suggest that captive-born dolphins can incorporate features of artificial acoustic models made by humans into their signature whistles.  相似文献   

3.
There is no information about the whistles of rough-toothed dolphins in the South Atlantic Ocean. This study characterizes the whistle structure of free-ranging rough-toothed dolphins recorded on the Rio de Janeiro coast, southeastern Brazil, and compares it to that of the same species in other regions. A total of 340 whistles were analyzed. Constant (N = 115; 33.8%) and ascending (N = 99; 29.1%) whistles were the most common contours. The whistles recorded had their fundamental frequencies between 2.24 and 13.94 kHz. Whistles without inflection points were frequently emitted (N = 255; 75%). Some signals presented breaks or steps in their contour (N = 97; 28.5%). Whistle duration was short (347 ± 236 ms and 89.7% of the whistles lasted <600 ms). Seventy-eight whistle contour types were found in the total of whistles analyzed, and 27 (7.9%) of these occurred only once. Most of the whistle types were unique to a particular recording session (N = 43). The signals emitted by the rough-toothed dolphins in southeastern Brazil were characterized by low frequency modulation, short duration, low number of inflection points, and breaks. Differences in the mean values of the whistle parameters were found between this and other studies that recorded Steno bredanensis, but as in other localities, whistles above 14 kHz are rare.  相似文献   

4.
Whistles from five delphinid species in the western Mediterranean Sea (Stenella coeruleoalba, Grampus griseus, Delphinus delphis, Tursiops truncatus, Globicephala melas) were taken from GREC sound archives. FFT contours (window size 512, Hanning, sampling frequency 44.1 kHz) were extracted with custom developed Matlab software: 277 samples of striped dolphins (Sc), 158 whistles of Risso’s dolphins (Gg), 120 of common dolphins (Dd), 76 of bottlenose dolphins (Tt), and 66 of pilot whales (Gm) were selected. Seafox software extracted 15 variables from the digitized contours, including: duration, initial, final, maximal and minimal frequency slopes, frequency range, number of frequency extrema, beginning, ending, maximal and minimal frequencies, presence of harmonics. Four of five species were significantly different (Mann-Whitney test) for average durations (respectively 0.73, 0.65, 0.47 and 0.89 s for Sc, Gg, Dd, Gm) while the average duration of bottlenose dolphins was 0.71 s. Frequency ranges (respectively 7.3, 6.3, 4.6, 3.2 and 6.3 kHz) were significantly different for all species pairs, with the exception of bottlenose and Risso’s dolphins. From a global point of view, pilot whale calls were the most distinct, with 43 significant pair-wise tests out of a total of 52, followed by the common dolphins. Risso’s dolphins were closest to other species whistles. A CART classification method achieved a global classification rate of 62.9%.  相似文献   

5.
Geographic variations in the whistles of Hawai'ian spinner dolphins are discussed by comparing 27 spinner dolphin pods recorded in waters off the Islands of Kaua'i, O'ahu, Lana'i, and Hawai'i. Three different behavioral states, the number of dolphins observed in each pod, and ten parameters extracted from each whistle contour were considered by using clustering and discriminant function analyses. The results suggest that spinner dolphin pods in the Main Hawai'ian Islands share characteristics in approximately 48% of their whistles. Spinner dolphin pods had similar whistle parameters regardless of the island, location, and date when they were sampled and the dolphins' behavioral state and pod size. The term "whistle-specific subgroup" (WSS) was used to designate whistle groups with similar whistles parameters (which could have been produced in part by the same dolphins). The emission rate of whistles was higher when spinner dolphins were socializing than when they were traveling or resting, suggesting that whistles are mainly used during close-range interactions. Spinner dolphins also seem to vary whistle duration according to their general behavioral state. Whistle duration and the number of turns and steps of a whistle may be more important in delivering information at the individual level than whistle frequency parameters.  相似文献   

6.
The characteristics of the whistles of Hawaiian spinner dolphins (Stenella longirostris) are considered by examining concurrently the whistle repertoire (whistle types) and the frequency of occurrence of each whistle type (whistle usage). Whistles were recorded off six islands in the Hawaiian Archipelago. In this study Hawaiian spinner dolphins emitted frequency modulated whistles that often sweep up in frequency (47% of the whistles were upsweeps). The frequency span of the fundamental component was mainly between 2 and 22 kHz (about 94% of the whistles) with an average mid-frequency of 12.9 kHz. The duration of spinner whistles was relatively short, mainly within a span of 0.05 to 1.28 s (about 94% of the whistles) with an average value of 0.49 s. The average maximum frequency of 15.9 kHz obtained by this study is consistent with the body length versus maximum frequency relationship obtained by Wang et al. (1995a) when using spinner dolphin adult body length measurements. When comparing the average values of whistle parameters obtained by this and other studies in the Island of Hawaii, statistically significant differences were found between studies. The reasons for these differences are not obvious. Some possibilities include differences in the upper frequency limit of the recording systems, different spinner groups being recorded, and observer differences in viewing spectrograms. Standardization in recording and analysis procedure is clearly needed.  相似文献   

7.
Whistles were recorded and analyzed from free-ranging single or mixed species groups of boto and tucuxi in the Peruvian Amazon, with sonograms presented. Analysis revealed whistles recorded falling into two discrete groups: a low-frequency group with maximum frequency below 5 kHz, and a high-frequency group with maximum frequencies above 8 kHz and usually above 10 kHz. Whistles in the two groups differed significantly in all five measured variables (beginning frequency, end frequency, minimum frequency, maximum frequency, and duration). Comparisons with published details of whistles by other platanistoid river dolphins and by oceanic dolphins suggest that the low-frequency whistles were produced by boto, the high-frequency whistles by tucuxi. Tape recordings obtained on three occasions when only one species was present tentatively support this conclusion, but it is emphasized that this is based on few data.  相似文献   

8.
Because whistles are most commonly associated with social delphinids, they have been largely overlooked, ignored, or presumed absent, in solitary freshwater dolphin species. Whistle production in the freshwater dolphin, the boto (Inia geoffrensis geoffrensis), has been controversial. Because of its sympatry with tucuxi dolphins (Sotalia fluviatilis), a whistling species, some presume tucuxi whistles might have been erroneously assigned to the boto. Using a broadband recording system, we recorded over 100 whistles from boto dolphins in the Yasunf River, Ecuador, where the tucuxi dolphins are absent. Our results therefore provide conclusive evidence for whistle production in Inia geoffrensis geoffrensis. Furthermore, boto whistles are significantly different from tucuxi whistles recorded in nearby rivers. The Ecuadorian boto whistle has a significantly greater frequency range (5.30-48.10 kHz) than previously reported in other populations (Peru and Colombia) that were recorded with more bandwidth limited equipment. In addition, the top frequency and the range are greater than in any other toothed whale species recorded to date. Whistle production was higher during resting activities, alone or in the presence of other animals. The confirmation of whistles in the boto has important implications for the evolution of whistles in Cetacea and their association with sociality.  相似文献   

9.
为分析圈养印太瓶鼻海豚与所处水环境间的关系,观测和记录了两只圈养印太瓶鼻海豚一年内的发声、行为及水环境温度、盐度及酸碱度。通过时频滤波和分析,筛选出一年中17:00到08:00内海豚发出的正弦型哨叫声。经统计、比对和相关性分析,得到:正弦型哨叫声发生量与海豚不良情绪行为发生量线性正相关(拟合优度R2=93.89%),8月—10月发生频次最多,此时海豚不良情绪行为也最多;该类型信号发生量占比与所处水环境月平均温度和盐度有关,并拟合出它们的关系式(拟合优度R2=68.61%),但受月平均酸碱度影响不大;水环境月平均温度和盐度在一定范围内时,海豚不良情绪行为发生量占比可以控制在12%以下。研究结果为今后利用海豚哨叫声判断海豚生物行为、健康状况、圈养环境舒适度等提供一定的科学参考。   相似文献   

10.
Acoustic communication through whistles is well developed in dolphins. However, little is known on how dolphins are using whistles because localizing the sound source is not an easy task. In the present study, the hyperbola method was used to localize the sound source using a two-hydrophone array. A combined visual and acoustic method was used to determine the identity of the whistling dolphin. In an aquarium in Mexico City where two adult bottlenose dolphins were housed we recorded 946 whistles during 22 days. We found that a dolphin was located along the calculated hyperbola for 72.9% of the whistles, but only for 60.3% of the whistles could we determine the identity of the whistling dolphin. However, sometimes it was possible to use other cues to identify the whistling dolphin. It could be the animal that performed a behavior named “observation” at the time whistling occurred or, when a whistle was only recorded on one channel, the whistling dolphin could be the animal located closest to the hydrophone that captured the whistle. Using these cues, 15.4% of the whistles were further ascribed to either dolphin to obtain an overall identification efficiency of 75.7%. Our results show that a very simple and inexpensive acoustic setup can lead to a reasonable number of identifications of the captive whistling dolphin: this is the first study to report such a high rate of whistles identified to the free swimming, captive dolphin that produced them. Therefore, we have a data set with which we can investigate how dolphins are using whistles. This method can be applied in other aquaria where a small number of dolphins is housed; though, the actual efficiency of this method will depend on how often dolphins spend time next to each other and on the reverberation conditions of the pool.  相似文献   

11.
Bottlenose dolphins, Tursiops truncatus, exhibit flexible associations in which the compositions of groups change frequently. We investigated the potential distances over which female dolphins and their dependent calves could remain in acoustic contact. We quantified the propagation of sounds in the frequency range of typical dolphin whistles in shallow water areas and channels of Sarasota Bay, Florida. Our results indicated that detection range was noise limited as opposed to being limited by hearing sensitivity. Sounds were attenuated to a greater extent in areas with seagrass than any other habitat. Estimates of active space of whistles showed that in seagrass shallow water areas, low-frequency whistles (7-13 kHz) with a 165 dB source level could be heard by dolphins at 487 m. In shallow areas with a mud bottom, all whistle frequency components of the same whistle could be heard by dolphins travel up to 2 km. In channels, high-frequency whistles (13-19 kHz) could be detectable potentially over a much longer distance (> 20 km). Our findings indicate that the communication range of social sounds likely exceeds the mean separation distances between females and their calves. Ecological pressures might play an important role in determining the separation distances within communication range.  相似文献   

12.
A signal-processing algorithm was developed to analyze harmonic frequency-modulated sounds, to modify the parameters of the analyzed signal, and to synthesize a new analytically specified signal that resembles the original signal in specified features. This algorithm was used with dolphin whistles, a frequency-modulated harmonic signal that has typically been described in terms of its contour, or pattern of modulation of the fundamental frequency. In order to test whether other features may also be salient to dolphins, the whistle analysis calculates the energies at the harmonics as well as the fundamental frequency of the whistle. The modification part of the algorithm can set all of these energies to a constant, can shift the whistle frequency, and can expand or compress the time base or the frequency of the whistle. The synthesis part of the algorithm then synthesizes a waveform based upon the energies and frequencies of the fundamental and first two harmonics. These synthetic whistles will be useful for evaluating what acoustic features dolphins use in discriminating different whistles.  相似文献   

13.
Bottlenose dolphins (Tursiops sp.) depend on frequency-modulated whistles for many aspects of their social behavior, including group cohesion and recognition of familiar individuals. Vocalization amplitude and frequency influences communication range and may be shaped by many ecological and physiological factors including energetic costs. Here, a calibrated GPS-synchronized hydrophone array was used to record the whistles of bottlenose dolphins in a tropical shallow-water environment with high ambient noise levels. Acoustic localization techniques were used to estimate the source levels and energy content of individual whistles. Bottlenose dolphins produced whistles with mean source levels of 146.7 ± 6.2 dB re. 1 μPa(RMS). These were lower than source levels estimated for a population inhabiting the quieter Moray Firth, indicating that dolphins do not necessarily compensate for the high noise levels found in noisy tropical habitats by increasing their source level. Combined with measured transmission loss and noise levels, these source levels provided estimated median communication ranges of 750 m and maximum communication ranges up to 5740 m. Whistles contained less than 17 mJ of acoustic energy, showing that the energetic cost of whistling is small compared to the high metabolic rate of these aquatic mammals, and unlikely to limit the vocal activity of toothed whales.  相似文献   

14.
Whistle emissions were recorded from small groups of marine tucuxi dolphins (Sotalia fluviatilis) in two beaches located in an important biological reserve in the Cananéia estuary (25 degrees 03'S, 47 degrees 58'W), southeastern Brazil. A total of 17 h of acoustic data was collected when dolphins were engaged in a specific feeding foraging activity. The amount of 3235 whistles was recorded and 40% (n=1294) were analyzed. Seven acoustic whistle parameters were determined: duration (ms), number of inflection points, start and end frequency (kHz), minimum and maximum frequency (kHz), and frequency range (kHz). Whistles with up to four inflection points were found. Whistles with no inflection points and rising frequency corresponded to 85% (n=1104) of all analyzed whistles. Whistle duration varied from 38 to 627 ms (mean=229.6+/-109.9 ms), with the start frequency varying between 1 and 16 kHz (mean=8.16+/-3.0 kHz) and the end frequency between 2 and 18 kHz (mean=14.35+/-3.0 kHz). The importance of this study requires an accurate measurement of the whistles' emissions in an unusual foraging feeding behavior situation on two beaches where several tucuxis, mostly mother-calf pairs, are frequently present. These two beaches are located in a federal and state environment Environmental Protected Area threatened by the progressive increase of tourism.  相似文献   

15.
魏翀  许肖梅  张宇  牛富强 《声学学报》2014,39(4):452-458
根据频率特性对圈养宽吻海豚(Tursiops truncatus)在自由游动和训练两种实验条件下的声通讯信号进行分类,并利用双尾t检验统计分析方法对两种条件下的信号声谱参数进行统计比较。结果显示,宽吻海豚在自由状态下通讯信号的种类多并以正弦型为主,而训练期间的通讯信号则大多数为上扫频类。此外,统计分析表明起始频率不能反映这两种状态的不同(p=0.22)。结束频率、最小频率、最大频率、频率变化量、拐点数、环形数、阶数、波形数和周期等则显示了两种状态显著的差异性(p<0.05)。结果为今后海豚声行为研究提供一定的科学参考和基础。   相似文献   

16.
To improve our understanding of how dolphins use acoustic signals in the wild, a three-hydrophone towed array was used to investigate the spatial occurrence of Hawaiian spinner dolphins (Stenella longirostris) relative to each other as they produced whistles, burst pulses, and echolocation clicks. Groups of approximately 30 to 60 animals were recorded while they traveled and socialized in nearshore waters off Oahu, Hawaii. Signaling animals were localized using time of arrival difference cues on the three channels. Sequences of whistles occurred between dolphins separated by significantly greater distances than animals producing burst pulses. Whistles typically originated from dolphins spaced widely apart (median = 23 m), supporting the hypothesis that whistles play a role in maintaining contact between animals in a dispersed group. Burst pulses, on the other hand, usually came from animals spaced closer to one another (median = 14 m), suggesting they function as a more intimate form of signaling between adjacent individuals. The spacing between echolocating animals was more variable and exhibited a bimodal distribution. Three quarters of echolocating animals were separated by 10 m or more, suggesting that the task of vigilance in a pod may not be shared equally by all members at all times.  相似文献   

17.
The spectral and temporal properties of echolocation clicks and the use of clicks for species classification are investigated for five species of free-ranging dolphins found offshore of southern California: short-beaked common (Delphinus delphis), long-beaked common (D. capensis), Risso's (Grampus griseus), Pacific white-sided (Lagenorhynchus obliquidens), and bottlenose (Tursiops truncatus) dolphins. Spectral properties are compared among the five species and unique spectral peak and notch patterns are described for two species. The spectral peak mean values from Pacific white-sided dolphin clicks are 22.2, 26.6, 33.7, and 37.3 kHz and from Risso's dolphins are 22.4, 25.5, 30.5, and 38.8 kHz. The spectral notch mean values from Pacific white-sided dolphin clicks are 19.0, 24.5, and 29.7 kHz and from Risso's dolphins are 19.6, 27.7, and 35.9 kHz. Analysis of variance analyses indicate that spectral peaks and notches within the frequency band 24-35 kHz are distinct between the two species and exhibit low variation within each species. Post hoc tests divide Pacific white-sided dolphin recordings into two distinct subsets containing different click types, which are hypothesized to represent the different populations that occur within the region. Bottlenose and common dolphin clicks do not show consistent patterns of spectral peaks or notches within the frequency band examined (1-100 kHz).  相似文献   

18.
Efforts to study the social acoustic signaling behavior of delphinids have traditionally been restricted to audio-range (<20 kHz) analyses. To explore the occurrence of communication signals at ultrasonic frequencies, broadband recordings of whistles and burst pulses were obtained from two commonly studied species of delphinids, the Hawaiian spinner dolphin (Stenella longirostris) and the Atlantic spotted dolphin (Stenella frontalis). Signals were quantitatively analyzed to establish their full bandwidth, to identify distinguishing characteristics between each species, and to determine how often they occur beyond the range of human hearing. Fundamental whistle contours were found to extend beyond 20 kHz only rarely among spotted dolphins, but with some regularity in spinner dolphins. Harmonics were present in the majority of whistles and varied considerably in their number, occurrence, and amplitude. Many whistles had harmonics that extended past 50 kHz and some reached as high as 100 kHz. The relative amplitude of harmonics and the high hearing sensitivity of dolphins to equivalent frequencies suggest that harmonics are biologically relevant spectral features. The burst pulses of both species were found to be predominantly ultrasonic, often with little or no energy below 20 kHz. The findings presented reveal that the social signals produced by spinner and spotted dolphins span the full range of their hearing sensitivity, are spectrally quite varied, and in the case of burst pulses are probably produced more frequently than reported by audio-range analyses.  相似文献   

19.
20.
Ryabov  V. A. 《Acoustical Physics》2022,68(3):294-303
Acoustical Physics - It is known that neonatal dolphins begin to produce FM signals (whistles) immediately after birth. The objective of this paper is to study dynamics of the FM signal parameters...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号