首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study measured the head-related transfer functions (HRTFs) of the Mongolian gerbil for various sound-source directions, and explored acoustical cues for sound localization that could be available to the animals. The HRTF exhibited spectral notches for frequencies above 25 kHz. The notch frequency varied systematically with source direction, and thereby characterized the source directions well. The frequency dependence of the acoustical axis, the direction for which the HRTF amplitude was maximal, was relatively irregular and inconsistent between ears and animals. The frequency-by-frequency plot of the interaural level difference (ILD) exhibited positive and negative peaks, with maximum values of 30 dB at around 30 kHz. The ILD peak frequency had a relatively irregular spatial distribution, implying a poor sound localization cue. The binaural acoustical axis (the direction with the maximum ILD magnitude) showed relatively orderly clustering around certain frequencies, the pattern being fairly consistent among animals. The interaural time differences (ITDs) were also measured and fell in a +/- 120 micros range. When two different animal postures were compared (i.e., the animal was standing on its hind legs and prone), small but consistent differences were found for the lower rear directions on the HRTF amplitudes, the ILDs, and the ITDs.  相似文献   

2.
The acoustical cues for sound location are generated by spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although rats have been a common model system for anatomy, physiology, and psychophysics of localization, there have been few studies of the acoustical cues available to rats. Here, directional transfer functions (DTFs), the directional components of the head-related transfer functions, were measured in six adult rats. The cues to location were computed from the DTFs. In the frontal hemisphere, spectral notches were present for frequencies from approximately 16 to 30 kHz; in general, the frequency corresponding to the notch increased with increases in source elevation and in azimuth toward the ipsilateral ear. The maximum high-frequency envelope-based interaural time differences (ITDs) were 130 mus, whereas low-frequency (<3.5 kHz) fine-structure ITDs were 160 mus; both types of ITDs were larger than predicted from spherical head models. Interaural level differences (ILDs) strongly depended on location and frequency. Maximum ILDs were <10 dB for frequencies <8 kHz and were as large as 20-40 dB for frequencies >20 kHz. Removal of the pinna eliminated the spectral notches, reduced the acoustic gain and ILDs, altered the acoustical axis, and reduced the ITDs.  相似文献   

3.
Sound source localization on the horizontal plane is primarily determined by interaural time differences (ITDs) for low-frequency stimuli and by interaural level differences (ILDs) for high-frequency stimuli, but ITDs in high-frequency complex stimuli can also be used for localization. Of interest here is the relationship between the processing of high-frequency ITDs and that of low-frequency ITDs and high-frequency ILDs. A few similarities in human performance with high- and low-frequency ITDs have been taken as evidence for similar ITD processing across frequency regions. However, such similarities, unless accompanied by differences between ITD and ILD performance on the same measure, could potentially reflect processing attributes common to both ITDs and ILDs rather than to ITDs only. In the present experiment, both learning and variability patterns in human discrimination of ITDs in high-frequency amplitude-modulated tones were examined and compared to previously obtained data with low-frequency ITDs and high-frequency ILDs. Both patterns for high-frequency ITDs were more similar to those for low-frequency ITDs than for high-frequency ILDs. These results thus add to the evidence supporting similar ITD processing across frequency regions, and further suggest that both high- and low-frequency ITD processing is less modifiable and more noisy than ILD processing.  相似文献   

4.
Selected subjects with bilateral cochlear implants (CIs) showed excellent horizontal localization of wide-band sounds in previous studies. The current study investigated localization cues used by two bilateral CI subjects with outstanding localization ability. The first experiment studied localization for sounds of different spectral and temporal composition in the free field. Localization of wide-band noise was unaffected by envelope pulsation, suggesting that envelope-interaural time difference (ITD) cues contributed little. Low-pass noise was not localizable for one subject and localization depended on the cutoff frequency for the other which suggests that ITDs played only a limited role. High-pass noise with slow envelope changes could be localized, in line with contribution of interaural level differences (ILDs). In experiment 2, processors of one subject were raised above the head to void the head shadow. If they were spaced at ear distance, ITDs allowed discrimination of left from right for a pulsed wide-band noise. Good localization was observed with a head-sized cardboard inserted between processors, showing the reliance on ILDs. Experiment 3 investigated localization in virtual space with manipulated ILDs and ITDs. Localization shifted predominantly for offsets in ILDs, even for pulsed high-pass noise. This confirms that envelope ITDs contributed little and that localization with bilateral CIs was dominated by ILDs.  相似文献   

5.
Listeners detected interaural differences of time (ITDs) or level (ILDs) carried by single 4000-Hz Gabor clicks (Gaussian-windowed tone bursts) and trains of 16 such clicks repeating at an interclick interval (ICI) of 2, 5, or 10 ms. In separate conditions, target interaural differences favored the right ear by a constant amount for all clicks (condition RR), attained their peak value at onset and diminished linearly to 0 at offset (condition R0), or grew linearly from 0 at onset to a peak value at offset (condition 0R). Threshold ITDs and ILDs were determined adaptively in separate experiments for each of these conditions and for single clicks. ITD thresholds were found to be lower for 16-click trains than for single clicks at 10-ms ICI, regardless of stimulus condition. At 2-ms ICI, thresholds in RR and R0 conditions were similar to single click thresholds at 2-ms ICI; thresholds in the 0R condition were significantly worse than for single clicks at 2-ms ICI, consistent with strong rate-dependent onset dominance in listeners' temporal weighting of ITD. ILD thresholds, in contrast, were predominantly unaffected by ICI, suggesting little or no onset dominance for ILD of high-rate stimuli.  相似文献   

6.
Three experiments investigated the roles of interaural time differences (ITDs) and level differences (ILDs) in spatial unmasking in multi-source environments. In experiment 1, speech reception thresholds (SRTs) were measured in virtual-acoustic simulations of an anechoic environment with three interfering sound sources of either speech or noise. The target source lay directly ahead, while three interfering sources were (1) all at the target's location (0 degrees,0 degrees,0 degrees), (2) at locations distributed across both hemifields (-30 degrees,60 degrees,90 degrees), (3) at locations in the same hemifield (30 degrees,60 degrees,90 degrees), or (4) co-located in one hemifield (90 degrees,90 degrees,90 degrees). Sounds were convolved with head-related impulse responses (HRIRs) that were manipulated to remove individual binaural cues. Three conditions used HRIRs with (1) both ILDs and ITDs, (2) only ILDs, and (3) only ITDs. The ITD-only condition produced the same pattern of results across spatial configurations as the combined cues, but with smaller differences between spatial configurations. The ILD-only condition yielded similar SRTs for the (-30 degrees,60 degrees,90 degrees) and (0 degrees,0 degrees,0 degrees) configurations, as expected for best-ear listening. In experiment 2, pure-tone BMLDs were measured at third-octave frequencies against the ITD-only, speech-shaped noise interferers of experiment 1. These BMLDs were 4-8 dB at low frequencies for all spatial configurations. In experiment 3, SRTs were measured for speech in diotic, speech-shaped noise. Noises were filtered to reduce the spectrum level at each frequency according to the BMLDs measured in experiment 2. SRTs were as low or lower than those of the corresponding ITD-only conditions from experiment 1. Thus, an explanation of speech understanding in complex listening environments based on the combination of best-ear listening and binaural unmasking (without involving sound-localization) cannot be excluded.  相似文献   

7.
The underwater sound localization acuity of harbor seals (Phoca vitulina) was measured in the horizontal plane. Minimum audible angles (MAAs) of pure tones were determined as a function of frequency from 0.2 to 16 kHz for two seals. Testing was conducted in a 10-m-diam underwater half circle using a right/left psychophysical procedure. The results indicate that for both harbor seals, MAAs were large at high frequencies (13.5 degrees and 17.4 degrees at 16 kHz), transitional at intermediate frequencies (9.6 degrees and 10.1 degrees at 4 kHz), and particularly small at low frequencies (3.2 degrees and 3.1 degrees at 0.2 kHz). Harbor seals seem to be able to utilize both binaural cues, interaural time differences (ITDs) and interaural intensity differences (IIDs), but a significant decrease in the sound localization acuity with increasing frequency suggests that IID cues may not be as robust as ITD cues under water. These results suggest that the harbor seal can be regarded as a low-frequency specialist. Additionally, to obtain a MAA more representative of the species, the horizontal underwater MAA of six adult harbor seals was measured at 2 kHz under identical conditions. The MAAs of the six animals ranged from 8.8 degrees to 11.7 degrees , resulting in a mean MAA of 10.3 degrees .  相似文献   

8.
The current understanding of mammalian sound localization is that azimuthal (horizontal) position assignments are dependent upon the relative activation of two populations of broadly-tuned hemifield neurons with overlapping medial borders. Recent psychophysical work has provided evidence for a third channel of low-frequency interaural time difference (ITD)-sensitive neurons tuned to the azimuthal midline. However, the neurophysiological data on free-field azimuth receptive fields, especially of cortical neurons, has primarily studied high-frequency cells whose receptive fields are more likely to have been shaped by interaural level differences (ILDs) than ITDs. In four experiments, a selective adaptation paradigm was used to probe for the existence of a midline channel in the domain of ILDs. If no midline channel exists, symmetrical adaptation of the lateral channels should not result in a shift in the perceived intracranial location of subsequent test tones away from the adaptors because the relative activation of the two channels will remain unchanged. Instead, results indicate a shift in perceived test tone location away from the adaptors, which supports the existence of a midline channel in the domain of ILDs. Interestingly, this shift occurs not only at high frequencies, traditionally associated with ILDs in natural settings, but at low frequencies as well.  相似文献   

9.
The precedence effect (PE) describes the ability to localize a direct, leading sound correctly when its delayed copy (lag) is present, though not separately audible. The relative contribution of binaural cues in the temporal fine structure (TFS) of lead-lag signals was compared to that of interaural level differences (ILDs) and interaural time differences (ITDs) carried in the envelope. In a localization dominance paradigm participants indicated the spatial location of lead-lag stimuli processed with a binaural noise-band vocoder whose noise carriers introduced random TFS. The PE appeared for noise bursts of 10 ms duration, indicating dominance of envelope information. However, for three test words the PE often failed even at short lead-lag delays, producing two images, one toward the lead and one toward the lag. When interaural correlation in the carrier was increased, the images appeared more centered, but often remained split. Although previous studies suggest dominance of TFS cues, no image is lateralized in accord with the ITD in the TFS. An interpretation in the context of auditory scene analysis is proposed: By replacing the TFS with that of noise the auditory system loses the ability to fuse lead and lag into one object, and thus to show the PE.  相似文献   

10.
Five bilateral cochlear implant users were tested for their localization abilities and speech understanding in noise, for both monaural and binaural listening conditions. They also participated in lateralization tasks to assess the impact of variations in interaural time delays (ITDs) and interaural level differences (ILDs) for electrical pulse trains under direct computer control. The localization task used pink noise bursts presented from an eight-loudspeaker array spanning an arc of approximately 108 degrees in front of the listeners at ear level (0-degree elevation). Subjects showed large benefits from bilateral device use compared to either side alone. Typical root-mean-square (rms) averaged errors across all eight loudspeakers in the array were about 10 degrees for bilateral device use and ranged from 20 degrees to 60 degrees using either ear alone. Speech reception thresholds (SRTs) were measured for sentences presented from directly in front of the listeners (0 degrees) in spectrally matching speech-weighted noise at either 0 degrees, +90 degrees or -90 degrees for four subjects out of five tested who could perform the task. For noise to either side, bilateral device use showed a substantial benefit over unilateral device use when noise was ipsilateral to the unilateral device. This was primarily because of monaural head-shadow effects, which resulted in robust SRT improvements (P<0.001) of about 4 to 5 dB when ipsilateral and contralateral noise positions were compared. The additional benefit of using both ears compared to the shadowed ear (i.e., binaural unmasking) was only 1 or 2 dB and less robust (P = 0.04). Results from the lateralization studies showed consistently good sensitivity to ILDs; better than the smallest level adjustment available in the implants (0.17 dB) for some subjects. Sensitivity to ITDs was moderate on the other hand, typically of the order of 100 micros. ITD sensitivity deteriorated rapidly when stimulation rates for unmodulated pulse-trains increased above a few hundred Hz but at 800 pps showed sensitivity comparable to 50-pps pulse-trains when a 50-Hz modulation was applied. In our opinion, these results clearly demonstrate important benefits are available from bilateral implantation, both for localizing sounds (in quiet) and for listening in noise when signal and noise sources are spatially separated. The data do indicate, however, that effects of interaural timing cues are weaker than those from interaural level cues and according to our psychophysical findings rely on the availability of low-rate information below a few hundred Hz.  相似文献   

11.
The transformations of sound by the auditory periphery of the ferret have been investigated using an impulse response technique for a large number of sound locations surrounding the animal. Individual frequencies were extracted from the detailed spectral transformation functions (STFs) obtained for each stimulus location and, using sophisticated spatial interpolation routines, were used to calculate the directional response of the periphery at that frequency. The strength of the directional response was directly related to the analysis frequency. Furthermore, as the analysis frequency was increased to 20 kHz, the orientation of the directional response increased in elevation from the horizon (E0 degrees) to about E30 degrees, while the azimuthal location remained fairly constant at 30 degrees to 40 degrees from the midline. For analysis frequencies above 20 kHz, the response became increasingly directional toward the ipsilateral interaural axis. The interaural level differences (ILDs) were also calculated for all animals studied. ILDs increased from around 5 to 25 dB over the range of frequencies from 3-24 kHz. The two-dimensional patterns of iso-ILD contours were roughly concentric and centered on the interaural axis for frequencies below 16 kHz. For higher frequencies, there was a tendency for the ILD contours to be centered on more anterior and inferior locations. The increased directionality of the auditory periphery with increasing analysis frequency, together with the presence of sharp nulls in the response at high analysis frequencies, is consistent with a diffractive effect produced by the aperture of the pinna. However, this simple model does not predict the directional responses over the low to middle frequency range.  相似文献   

12.
Binaural room impulse responses (BRIRs) were measured in a classroom for sources at different azimuths and distances (up to 1 m) relative to a manikin located in four positions in a classroom. When the listener is far from all walls, reverberant energy distorts signal magnitude and phase independently at each frequency, altering monaural spectral cues, interaural phase differences, and interaural level differences. For the tested conditions, systematic distortion (comb-filtering) from an early intense reflection is only evident when a listener is very close to a wall, and then only in the ear facing the wall. Especially for a nearby source, interaural cues grow less reliable with increasing source laterality and monaural spectral cues are less reliable in the ear farther from the sound source. Reverberation reduces the magnitude of interaural level differences at all frequencies; however, the direct-sound interaural time difference can still be recovered from the BRIRs measured in these experiments. Results suggest that bias and variability in sound localization behavior may vary systematically with listener location in a room as well as source location relative to the listener, even for nearby sources where there is relatively little reverberant energy.  相似文献   

13.
The current study investigates buildup and breakdown of echo suppression for stimuli presented over headphones. The stimuli consisted of pairs of 120-micros clicks. The leading click (lead) and the lagging click (lag) in each pair were lateralized on opposite sides of the midline by means of interaural level differences (ILDs) of +/-10 dB or interaural time differences (ITDs) of +/-300 micros. Echo threshold was measured with an adaptive one-interval, two-alternative, forced-choice procedure with a subjective decision criterion, in which listeners had to report whether they heard a single, fused auditory event on one side of the midline, or two separate events on both sides. In the control conditions, referred to as the "single" conditions, echo threshold was measured for a single click pair, the test pair, presented in isolation. In addition to the control conditions, two kinds of test conditions were investigated, in which the test pair was preceded by 12 identical conditioning pairs: in the "same" conditions, the interaural configuration (ILDs or ITDs) of the conditioning pairs was identical to that of the test pair; in the "switch" conditions, the interaural configuration of lead and lag was reversed between the conditioning pairs and the test pair, in order to produce a switch in the lateralizations of the stimuli between the conditioning train and the test pair. No matter whether the lateralization of the clicks was produced by ILDs or by ITDs, most listeners experienced a buildup of echo suppression in the "same" conditions, manifested by a prolongation of echo threshold relative to the respective "single" conditions. However, the breakdown of echo suppression was much stronger in the ILD-switch than in the ITD-switch conditions. In five out of six listeners, the ITD switch had hardly any effect on echo threshold, although the ITDs (+/-300 micros) produced roughly the same degree of lateral displacement as the ILDs (+/-10 dB). These results suggest that the dynamic processes in echo suppression operate differentially in pathways responsible for the processing of interaural time and level differences.  相似文献   

14.
This study examined spatial release from masking (SRM) when a target talker was masked by competing talkers or by other types of sounds. The focus was on the role of interaural time differences (ITDs) and time-varying interaural level differences (ILDs) under conditions varying in the strength of informational masking (IM). In the first experiment, a target talker was masked by two other talkers that were either colocated with the target or were symmetrically spatially separated from the target with the stimuli presented through loudspeakers. The sounds were filtered into different frequency regions to restrict the available interaural cues. The largest SRM occurred for the broadband condition followed by a low-pass condition. However, even the highest frequency bandpass-filtered condition (3-6 kHz) yielded a significant SRM. In the second experiment the stimuli were presented via earphones. The listeners identified the speech of a target talker masked by one or two other talkers or noises when the maskers were colocated with the target or were perceptually separated by ITDs. The results revealed a complex pattern of masking in which the factors affecting performance in colocated and spatially separated conditions are to a large degree independent.  相似文献   

15.
The role of temporal fluctuations and systematic variations of interaural parameters in localization of sound sources in spatially distributed, nonstationary noise conditions was investigated. For this, Bayesian estimation was applied to interaural parameters calculated with physiologically plausible time and frequency resolution. Probability density functions (PDFs) of the interaural level differences (ILDs) and phase differences (IPDs) were estimated by measuring histograms for a directional sound source perturbed by several types of interfering noise at signal-to-noise ratios (SNRs) between -5 and +30 dB. A moment analysis of the PDFs reveals that the expected values shift and the standard deviations increase considerably with decreasing SNR, and that the PDFs have non-Gaussian shape at medium SNRs. A d' analysis of the PDFs indicates that elevation discrimination is possible even at low SNRs in the median plane by integrating information across frequency. Absolute sound localization was simulated by a Bayesian maximum a posteriori (MAP) procedure. The simulation is based on frequency integration of broadly tuned "detectors." Confusion patterns of real and estimated sound source directions are similar to those of human listeners. The results indicate that robust processing strategies are needed to exploit interaural parameters successfully in noise conditions due to their strong temporal fluctuations.  相似文献   

16.
To clarify the role of spatial cues in sound segregation, this study explored whether interaural time differences (ITDs) are sufficient to allow listeners to identify a novel sound source from a mixture of sources. Listeners heard mixtures of two synthetic sounds, a target and distractor, each of which possessed naturalistic spectrotemporal correlations but otherwise lacked strong grouping cues, and which contained either the same or different ITDs. When the task was to judge whether a probe sound matched a source in the preceding mixture, performance improved greatly when the same target was presented repeatedly across distinct distractors, consistent with previous results. In contrast, performance improved only slightly with ITD separation of target and distractor, even when spectrotemporal overlap between target and distractor was reduced. However, when subjects localized, rather than identified, the sources in the mixture, sources with different ITDs were reported as two sources at distinct and accurately identified locations. ITDs alone thus enable listeners to perceptually segregate mixtures of sources, but the perceived content of these sources is inaccurate when other segregation cues, such as harmonicity and common onsets and offsets, do not also promote proper source separation.  相似文献   

17.
Individualization of head-related transfer functions (HRTFs) is important for highly accurate sound localization systems such as virtual auditory displays. A method to estimate interaural level differences (ILDs) from a listener's anthropometry is presented in this paper to avoid the burden of direct measurement of HRTFs. The main result presented in this paper is that localization is improved with nonindividualized HRTF if ILD is fitted to the listener. First, the relationship between ILDs and the anthropometric parameters was analyzed using multiple regression analysis. The azimuthal variation of the ILDs in each 1/3-octave band was then estimated from the listener's anthropometric parameters. A psychoacoustical experiment was carried out to evaluate its effectiveness. The experimental results show that the adjustment of the frequency characteristics of ILDs for a listener with the proposed method is effective for localization accuracy.  相似文献   

18.
A human psychoacoustical experiment is described that investigates the role of the monaural and interaural spectral cues in human sound localization. In particular, it focuses on the relative contribution of the monaural versus the interaural spectral cues towards resolving directions within a cone of confusion (i.e., directions with similar interaural time and level difference cues) in the auditory localization process. Broadband stimuli were presented in virtual space from 76 roughly equidistant locations around the listener. In the experimental conditions, a "false" flat spectrum was presented at the left eardrum. The sound spectrum at the right eardrum was then adjusted so that either the true right monaural spectrum or the true interaural spectrum was preserved. In both cases, the overall interaural time difference and overall interaural level difference were maintained at their natural values. With these virtual sound stimuli, the sound localization performance of four human subjects was examined. The localization performance results indicate that neither the preserved interaural spectral difference cue nor the preserved right monaural spectral cue was sufficient to maintain accurate elevation judgments in the presence of a flat monaural spectrum at the left eardrum. An explanation for the localization results is given in terms of the relative spectral information available for resolving directions within a cone of confusion.  相似文献   

19.
For localization of a sound source, animals and humans process the microsecond interaural time differences of arriving sound waves. How nervous systems, consisting of elements with time constants of about and more than 1 ms, can reach such high precision is still an open question. In this Letter we present a hypothesis and show theoretical and computational evidence that a rather large population of slowly integrating neurons with inhibitory and excitatory inputs (EI neurons) can detect minute temporal disparities in input signals which are significantly less than any time constant in the system.  相似文献   

20.
Dynamic-range compression acting independently at each ear in a bilateral hearing-aid or cochlear-implant fitting can alter interaural level differences (ILDs) potentially affecting spatial perception. The influence of compression on the lateral position of sounds was studied in normal-hearing listeners using virtual acoustic stimuli. In a lateralization task, listeners indicated the leftmost and rightmost extents of the auditory event and reported whether they heard (1) a single, stationary image, (2) a moving/gradually broadening image, or (3) a split image. Fast-acting compression significantly affected the perceived position of high-pass sounds. For sounds with abrupt onsets and offsets, compression shifted the entire image to a more central position. For sounds containing gradual onsets and offsets, including speech, compression increased the occurrence of moving and split images by up to 57 percentage points and increased the perceived lateral extent of the auditory event. The severity of the effects was reduced when undisturbed low-frequency binaural cues were made available. At high frequencies, listeners gave increased weight to ILDs relative to interaural time differences carried in the envelope when compression caused ILDs to change dynamically at low rates, although individual differences were apparent. Specific conditions are identified in which compression is likely to affect spatial perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号