首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene layers are often exposed to gaseous environments in their synthesis and application processes, and interactions of graphene surfaces with molecules particularly H_2 and O_2 are of great importance in their physico-chemical properties. In this work, etching of graphene overlayers on Pt(111) in H_2 and O_2 atmospheres were investigated by in-situ low energy electron microscopy. Significant graphene etching was observed in 10~(-5) Torr H_2 above 1023 K, which occurs simultaneously at graphene island edges and interiors with a determined reaction barrier at 5.7 eV. The similar etching phenomena were found in 10.7 Torr O_2 above 973 K, while only island edges were reacted between 823 and 923 K. We suggest that etching of graphene edges is facilitated by Pt-aided hydrogenation or oxidation of edge carbon atoms while intercalation-etching is attributed to etching at the interiors at high temperatures. The different findings with etching in O_2 and H_2 depend on competitive adsorption, desorption, and diffusion processes of O and H atoms on Pt surface, as well as intercalation at the graphene/Pt interface.  相似文献   

2.
Graphene layers are often exposed to gaseous environments in their synthesis and application processes, and interactions of graphene surfaces with molecules particularly H2 and O2 are of great importance in their physico-chemical properties. In this work, etching of graphene overlayers on Pt(111) in H2 and O2 atmospheres were investigated by in-situ low energy electron microscopy. Significant graphene etching was observed in 10-5 Torr H2 above 1023 K, which occurs simultaneously at graphene island edges and interiors with a determined reaction barrier at 5.7 eV. The similar etching phenomena were found in 10-7 Torr O2 above 973 K, while only island edges were reacted between 823 and 923 K. We suggest that etching of graphene edges is facilitated by Pt-aided hydrogenation or oxidation of edge carbon atoms while intercalation-etching is attributed to etching at the interiors at high temperatures. The different findings with etching in O2 and H2 depend on competitive adsorption, desorption, and diffusion processes of O and H atoms on Pt surface, as well as intercalation at the graphene/Pt interface.  相似文献   

3.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

4.
为研究纳米线的形成机理,通过密度泛函理论(DFT)研究了贵金属(铂)在脱质子化1,3-环加成石墨烯上的吸附.研究发现:(1)吸附在1,3-环加成石墨烯上的铂原子引起该结构的脱质子化过程并形成脱质子化1,3-环加成石墨烯;(2)贵金属在脱质子化1,3-环加成石墨烯上的锚定位是氮原子邻位的碳原子,这在邻位碳原子的平均巴德电荷分析(高达1.0e)中得到进一步的证实;(3)铂原子在相邻的脱质子化吡啶炔单元上形成金属纳米线,并且该纳米线比相应的铂团簇稳定得多;(4)电子结构分析表明,铂的吸附并没有从根本上改变脱质子化1,3-环加成石墨烯的电子性质.铂金属的掺杂使得Pt6团簇吸附形成的复合物呈现金属性,而Pt6纳米线形成的复合物则为半金属性.  相似文献   

5.
Bimetallic catalysts have demonstrated properties favorable for upgrading biofuel through catalytic hydrodeoxygenation. However, the design and optimization of such bimetallic catalysts requires the ability to construct accurate, predictive models of these systems. To generate a model that predicts the kinetic behavior of benzene adsorbed on Pt (1 1 1) and a Pt3Sn (1 1 1) surface alloy (Pt3Sn (1 1 1)), the adsorption of benzene was studied for a wide range of benzene coverages on both surfaces using density functional theory (DFT) calculations. The adsorption energy of benzene was found to correlate linearly with benzene coverage on Pt (1 1 1) and Pt3Sn (1 1 1); both surfaces exhibited net repulsive lateral interactions. Through an analysis of the d-band properties of the metal surface, it was determined that the coverage dependence is a consequence of the electronic interactions between benzene and the surface. The linear coverage dependence of the adsorption energy allowed us to quantify the influence of the lateral interactions on the heat of adsorption and temperature programmed desorption (TPD) spectra using a mean-field model. A comparison of our simulated TPD to experiment showed that this mean-field model adequately reproduces the desorption behavior of benzene on Pt (1 1 1) and Pt3Sn (1 1 1). In particular, the TPD correctly exhibits a broadening desorption peak as the initial coverage of benzene increases on Pt (1 1 1) and a low temperature desorption peak on Pt3Sn (1 1 1). However, due to the sensitivity of the TPD peak temperature to the desorption energy, precise alignment of experimental and theoretical TPD spectra demands an accurate calculation of the adsorption energy. Therefore, an analysis of the effect of the exchange-correlation functional on TPD modeling is presented. Through this work, we show the necessity of incorporating lateral interactions into theoretical models in order to correctly predict experimental behavior.  相似文献   

6.
采用密度泛函理论与周期性平板模型相结合的方法,对CO在Pt(111)表面top,fcc,hcp和bridge 4个吸附位和Pt-M(111)(M=Ni,Mg)表面h-top,M-top,Pt(M)Pt-bridge,Pt(M)M-bridge,Pt(Pt)M-bridge,M(Pt)M-bridge,Pt1M2-hcp...  相似文献   

7.
The electrochemical oxidation of formaldehyde over graphene surfaces modified with Pt–Ru co-catalyst is presented. Graphene was chemically converted from graphite and Pt–Ru co-catalyst was electrochemically deposited using cyclic voltammetry. The hybrid surface is prepared using “green approaches” and displayed electrocatalytic activity towards formaldehyde in the form of current oscillations. The current oscillations that were mainly due to adsorption/desorption of carbonaceous oxidative products are a factor of several parameters such as the concentrations of both formaldehyde and supporting electrolyte in solution, the amount of catalyst loading, scan rate of potential, upper potential limit, and the temperature change. CCG/Pt–Ru exhibited higher electrocatalytic activity toward formaldehyde electro-oxidation, and intense electrochemical current oscillations were obtained at relatively low HCHO concentrations compared to other work mentioned in literature for CCG/Pt–Pd.  相似文献   

8.
Understanding interactions between Nafion (perfluorosulfonic acid) and Pt catalysts is important for the development and deployment of proton exchange membrane fuel cells. However, study of such interactions is challenging and Nafion/Pt interfacial structure remains elusive. In this study, adsorption of Nafion ionomer on Au and Pt surfaces was investigated for the first time by in situ surface-enhanced Raman spectroscopy. The study is made possible by the use of uniform SiO(2)@Au core-shell particle arrays which provides very strong enhancement of Raman scattering. The high surface sensitivity offered by this approach yields insightful information on interfacial Nafion structure. Through spectral comparison of several model compounds, vibration assignments of SERS bands were made. The SER spectra suggest the direct interaction of sulfonate group with the metal surfaces, in accord with cyclic voltammetric results. Comparison of present SERS results with previous IR spectra was briefly made.  相似文献   

9.
We present a theoretical study of interactions of anionic and neutral serine (Ser) on pure or metal-doped graphene surfaces using density functional theory calculations. Interactions of both types of Ser with the pure graphene surface show weak non-covalent interactions due to the formation of -COOH…π, -COO-…π, and -OH…π interactions. On metaldoped graphene, covalent interactions to the surface dominate, due to the formation of strong metal-O and O-metal-O interactions. Furthermore, the doped Fe, Cr, Mn, Al, or Ti enhances the ability of graphene to attract both types of Ser by a combination of the adsorption energy, the density of states, the Mulliken atomic charges, and differences of electron density. At the same time, the interaction strengths of anionic Ser on various graphene surfaces are stronger than those of neutral Ser. These results provide useful insights for the rational design and development of graphene-based sensors for the two forms of Ser by introducing appropriate doped atoms. Ti and Fe are suggested to be the best choices among all doped atoms for the anionic Ser and neutral Ser, respectively.  相似文献   

10.
The adsorption dynamics of a model protein (the human insulin) onto graphene surfaces with different sizes was investigated by molecular dynamics simulations. During the adsorption, it has different effect on the stability of the model protein in the fixed and non-fixed graphene systems. The tertiary structure of the protein was destroyed or partially destroyed, and graphene surfaces shows the selective protection for some α-helices in non-fixed Systems but not in fixed systems by reason of the flexibility of graphene. As indicated by the interaction energy curve and trajectory animation, the conformation and orientation selection of the protein were induced by the properties and the texture of graphene surfaces. The knowledge of protein adsorption on graphene surfaces would be helpful to better understand stability of protein on graphene surfaces and facilitate potential applications of graphene in biotechnology.  相似文献   

11.
《Journal of Energy Chemistry》2017,26(6):1136-1139
The electrochemical hydrogen evolution reaction(HER) on a non-precious electrocatalyst in an alkaline environment is of essential importance for future renewable energy. The design of advanced electrocatalysts for HER is the most important part to reduce the cost and to enhance the efficiency of water splitting. MoS_2 is considered as one of the most promising electrocatalysts to replace the precious Pt catalyst.Herein, for the first time, we have successfully loaded MoS_2 electrocatalysts onto the Co_3O_4 nanosheet array to catalyze HER with a low onset potential of ~76 mV. The high hydrogen evolution activity of MoS_2 supported on the Co_3O_4 nanosheet array may be attributed to the increased active sites and the electronic interactions between MoS_2 and Co_3O_4.  相似文献   

12.
Direct conversion of methane using a metal-loaded ZSM-5 zeolite prepared via acidic ion exchange was investigated to elucidate the roles of metal and acidity in the formation of liquid hydrocarbons. ZSM-5 (SiO2/A12O3=30) was loaded with different metals (Cr, Cu and Ga) according to the acidic ion-exchange method to produce metal-loaded ZSM-5 zeolite catalysts. XRD, NMR, FT-IR and N2 adsorption analyses indicated that Cr and Ga species managed to occupy the alllmlnum positions in the ZSM-5 framework. In addition, Cr species were deposited in the pores of the structure. However, Cu oxides were deposited on the surface and in the mesopores of the ZSM-5 zeolite. An acidity study using TPD-NH3, FT-IR, and IR-pyridine analyses revealed that the total number of acid sites and the strengths of the BrSusted and Lewis acid sites were significantly different after the acidic ion exchange treatment.Cu loaded HZSM-5 is a potential catalyst for direct conversion of methane to liquid hydrocarbons. The successful production of gasoline via the direct conversion of methane depends on the amount of aluminum in the zeolite framework and the strength of the BrSnsted acid sites.  相似文献   

13.
采用密度泛函理论(DFT),选取DMol3程序模块,对噻吩在M(111)(M=Pd,Pt,Au)表面上的吸附行为进行了探讨.通过对噻吩在不同底物金属上的吸附能、吸附构型、Mulliken电荷布居、差分电荷密度以及态密度的分析发现,噻吩在Pd(111)面上的吸附能最大,Pt(111)面次之,Au(111)面最小.吸附后,噻吩在Au(111)面上的构型几乎保持不变,最终通过S端倾斜吸附于top位;噻吩在Pd(111)及Pt(111)面上发生了折叠与变形,环中氢原子向上翘起,最终通过环平面平行吸附于hollow位.此外,噻吩环吸附后芳香性遭到了破坏,环中碳原子发生sp3杂化,同时电子逐渐由噻吩向M(111)面发生转移,M(111)面上的部分电子也反馈给了噻吩环中的空轨道,这种协同作用最终导致了噻吩分子稳定吸附于M(111)面.  相似文献   

14.
This paper compares the adsorption behavior of 1,4-phenylene diisocyanide (PDI) and terephthalic acid (TA) on Ni, Cu and Pt surfaces. Following competitive adsorption from two-component equimolar solutions of PDI and TA, chemical analysis by XPS confirmed the preferential adsorption of PDI over TA on Ni and Cu. The ability to form "chemically sticky" surfaces on Ni, Cu and Pt surfaces by self-assembly into organized organic thin films (OOTFs) was also investigated. PM-IRRAS analysis revealed a tendency for PDI to bond in a terminal fashion through one isocyanide group, on both Ni and Cu. In contrast, PDI adsorbed in a flat configuration on Pt. Chemically sticky OOTFs have potential for utilization as coupling agents to achieve a high cross-link density and enhance stress transfer between the nanoclusters and the organic matrix molecules in metal-nanocluster-filled polymer matrix nanocomposites. The results of this work indicate that 1,4-phenylene diisocyanide is a suitable choice as a coupling agent for metal nanoclusters of Ni and Cu.  相似文献   

15.
This study provides details of the structure and interactions of Sarin and Soman with edge tetrahedral fragments of clay minerals. The adsorption mechanism of Sarin and Soman on these mineral fragments containing the Si(4+) and Al(3+) central cations was investigated. The calculations were performed using the B3LYP and MP2 levels of theory in conjunction with the 6-31G(d) basis set. The studied systems were fully optimized. Optimized geometries, adsorption energies, and Gibbs free energies of Sarin and Soman adsorption complexes were computed. The number and strength of formed intermolecular interactions have been analyzed using the AIM theory. The charge of the systems and a termination of the mineral fragment are the main contributing factors on the formation of intermolecular interactions in the studied systems. In the neutral complexes, Sarin and Soman is physisorbed on these mineral fragments due to the formation of C-H...O, and O-H...O hydrogen bonds. The chemical bond is formed between a phosphorus atom of Sarin and Soman and an oxygen atom of the -2 charged clusters containing an Al(3+) central cation and -1 charged complex containing a Si(4+) central cation (chemisorption). Sarin and Soman interact mostly in the same way with the same terminated edge mineral fragments containing different central cations. However, the interaction energies of the complexes with an Al(3+) central cation are larger than these values for the Si(4+) complexes. The interaction enthalpies of all studied systems corrected for the basis set superposition error were found to be negative. However, on the basis of the Gibbs free energy values, only strongly interacting complexes containing a charged edge mineral fragment with an Al(3+) central cation are stable at room temperature. We can conclude that Sarin and Soman will be adsorbed preferably on this type of edge mineral surfaces. Moreover, on the basis of the character of these edge surfaces, a tetrahedral edge mineral fragment can provide effective centers for the dissociation.  相似文献   

16.
In relation to the heterogeneous hydrogenation of nitrite, adsorption of NO2-, NH4+, and NH2OH from the aqueous phase was examined on Pt/Al2O3, Pd/Al2O3, and Al2O3. None of the investigated inorganic nitrogen compounds adsorb on alumina at conditions presented in this study. NO2-(aq) and NH4+(aq) on the other hand show similar adsorption characteristics on both Pd/Al2O3 and Pt/Al2O3. The vibrational spectrum of the NO2- ion changed substantially upon adsorption, clearly indicating that NO2- chemisorbs onto the supported metal catalysts. On the contrary, adsorption of NH4+ does not lead to significant change in the vibrational spectrum of the ion, indicating that the NH4+ ion does not chemisorb on the noble metal but is stabilized via an electrostatic interaction. When comparing the adsorption of hydroxylamine (NH2OH(aq)) on Pd/Al2O3 and Pt/Al2O3, significant differences were observed. On Pd/Al2O3, hydroxylamine is converted into a stable NH2(ads) fragment, whereas on Pt/Al2O3 hydroxylamine is converted into NO, possibly via HNO(ads) as an intermediate.  相似文献   

17.
The interaction between DNA and inorganic surfaces has attracted intense research interest, as a detailed understanding of adsorption and desorption is required for DNA microarray optimization, biosensor development, and nanoparticle functionalization. One of the most commonly studied surfaces is gold due to its unique optical and electric properties. Through various surface science tools, it was found that thiolated DNA can interact with gold not only via the thiol group but also through the DNA bases. Most of the previous work has been performed with planar gold surfaces. However, knowledge gained from planar gold may not be directly applicable to gold nanoparticles (AuNPs) for several reasons. First, DNA adsorption affinity is a function of AuNP size. Second, DNA may interact with AuNPs differently due to the high curvature. Finally, the colloidal stability of AuNPs confines salt concentration, whereas there is no such limit for planar gold. In addition to gold, graphene oxide (GO) has emerged as a new material for interfacing with DNA. GO and AuNPs share many similar properties for DNA adsorption; both have negatively charged surfaces but can still strongly adsorb DNA, and both are excellent fluorescence quenchers. Similar analytical and biomedical applications have been demonstrated with these two surfaces. The nature of the attractive force however, is different for each of these. DNA adsorption on AuNPs occurs via specific chemical interactions but adsorption on GO occurs via aromatic stacking and hydrophobic interactions. Herein, we summarize the recent developments in studying non-thiolated DNA adsorption and desorption as a function of salt, pH, temperature and DNA secondary structures. Potential future directions and applications are also discussed.  相似文献   

18.
使用硼氢化钠共还原法制备40% (w)铂/石墨烯电催化剂用于氧还原反应. 通过循环伏安测试发现, 这种方法制备所得铂/石墨烯催化剂对氧还原反应活性较铂/碳催化剂差, 但稳定性有所提高. 在稳定性测试中,铂/石墨烯电催化性能衰减为50%, 较铂/碳(79%)好. X射线衍射(XRD)和透射电子显微镜(TEM)表征发现在铂/石墨烯催化剂中两者存在明显交互作用, 这可能是阻止石墨烯再堆垛和防止铂颗粒团聚的主要原因. 通过对单电池性能测试也发现铂/石墨烯催化剂更有利于电池长期稳定.  相似文献   

19.
20.
研究了Pt/MgO, Pt/γ-Al2O3, Pt/ZrO2和Pt/HZSM-5催化剂上H2选择催化还原消除NOx(H2-SCR)反应。结果发现, H2-SCR活性和N2生成选择性受催化剂中Pt的金属性以及载体的氮氧化物吸附能力影响很大。 HZSM-5的表面酸性使载体对NOx吸附能力较小,使担载Pt以较高的金属性存在,从而导致Pt/HZSM-5催化剂的高活性和高选择性。相反, Pt/MgO和Pt/γ-Al2O3催化剂较差的活性和选择性可归因于其载体的碱性表面、催化剂中Pt较低的金属性以及载体对氮氧化物较大的吸附能力。结合反应的原位红外光谱结果可以认为,在Pt/载体界面处亚硝酸根/硝酸根物种被还原为N2或N2O,取决于该处参与反应的活性H与这些含氮物种的相对数目。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号