首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An actual keyhole is captured by a high-speed camera during deep penetration laser welding of aluminum alloy 6016. With the help of spectrograph, plasma spectra are acquired, and then after Abel transformation, electron temperature is calculated. Through Lorenz nonlinear fitting, the FWHM of Stark broadening lines is obtained to compute electron density. To know more about the mechanism of deep penetration laser welding, both the effect of Fresnel absorption and inverse bremsstrahlung absorption of plasma on the laser power distribution is considered. Results indicate that electron temperature is very unstable in the keyhole which has a declining tendency in the radius direction, electron density increases in the depth direction while it does not change too much along radius. Laser intensity absorbed on the keyhole wall through Fresnel absorption is hardly uniform and distributes mainly on the front wall and the bottom of keyhole wall, and inverse bremsstrahlung absorption of keyhole plasma plays a dominant role in absorbing laser power compared with Fresnel absorption.  相似文献   

2.
万瓦级光纤激光焊接过程中小孔内外等离子体研究   总被引:3,自引:0,他引:3       下载免费PDF全文
李时春  陈根余  周聪  陈晓锋  周宇 《物理学报》2014,63(10):104212-104212
为了进一步深入了解超高功率光纤激光深熔焊接过程中等离子体特征,试验拍摄了深熔小孔内外等离子体形态,并采用光谱仪检测分析了光纤激光致等离子体光谱信号.利用检测得到的等离子体光谱信号,计算研究了等离子体的电子温度、电子密度、电离度以及等离子体压力特征,并分析了在小孔内不同深度处及孔外等离子体的变化规律.结果表明,孔内等离子体呈现不均匀分布特征,孔外金属蒸气远多于等离子体.等离子体光谱分析显示,光纤激光致等离子体辐射出的谱线较少,即电离程度较低.进一步的计算结果同样证实了光纤激光致等离子体处于弱电离状态,但等离子体电子密度仍然处于较高水平,且等离子体瞬态压力可达到数百个大气压.  相似文献   

3.
By dividing laser pulse duration into two parts, three kinds of laser waveforms are designed, including a high power density pulse (HPDP) laser in a short duration set at the beginning of the laser waveform. This paper aims to find out the laser pulse waveform and idiographic critical values of HPDP, which can affect the magnesium penetration in laser-tungsten inert gas (TIG) hybrid welding. Results show that when the laser pulse duration of HPDP is not more than 0.4 ms, the welding penetration values of lasers with HPDP are larger than otherwise. Also, the welding penetration values of laser with HPDP have increased by up to 26.1%. It has been found that with HPDP, the laser can form the keyhole more easily because the interaction between laser and the plate is changed, when the TIG arc preheats the plate. Besides, the laser with high power density and short duration strikes on the plates so heavily that the corresponding background power can penetrate into the bottom of the keyhole and maintain the keyhole open, which facilitates the final welding penetration.  相似文献   

4.
In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×104 W/cm2, and the average peak power density is 2.6×105 W/cm2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.  相似文献   

5.
熔透检测是实现高功率激光焊接质量在线控制的重要环节,但由于介观尺度下的低辐值熔透特征信号产生于激光匙孔底部被匙孔喷射物质和周围干扰信号完全掩盖,熔透状态难以被直接获取,常规检测多以间接测量为主。将光谱透视技术、红外显微成像技术、光电传感技术及空间定位提取技术相结合,提出一种激光焊接熔透特征信号同轴增效提取方法。以高功率激光在匙孔内壁激发的荧光辐射源作为直接检测信号,利用不同发光体的谱段特性在红外谱段有效分离并抑制激光焊接匙孔上方的等离子体、金属蒸汽焰、粒子团簇等强干扰信号,使红外荧光信号得到有效增强,实现光谱透视显像效果。同时采用自行研制的激光焊接同轴显微光路系统,利用红外显微成像原理提取到匙孔内壁受激辐射荧光的红外显微实像。并以此为基础对高功率激光焊接熔透状态与匙孔内部影像特征进行关联研究,发现与熔透状态直接相关的低辐射值特征现象及特征区域的存在。通过视觉辅助定位调节和熔透特征位置试验矫正等寻位方式,依次提高定位精度,直至将传感器光电感应芯片高精度定位至荧光辐射实像中的熔透特征区域。由此通过光谱透视-显微成像-介观寻位萃取的逐层光学分离方式,实现了对匙孔熔透特征数据的精准提取和最大化增强。试验结果表明,基于多种光谱及光学处理技术复合应用的大功率固体激光焊熔透特征同轴增效提取方法对激光熔透特征信号增强效果显著,可作为一种新型的高功率激光焊接熔透在线检测手段。  相似文献   

6.
7.
A sandwich method was used to observe the keyhole in deep penetration laser welding, which provided an effective way to analyze both the Fresnel and inverse Bremsstrahlung absorption. In the transparent metal-analog system, different densities of metal vapor, ionized atoms, and free electrons in the keyhole can be simulated by changing the thickness of aluminum films. The research results show that inverse Bremsstrahlung absorption exerts a tremendous influence on the energy absorption of the laser beam for CO2 laser welding. Low density of keyhole plasma benefits the incident laser energy coupling to the materials. However, excess density of keyhole plasma baffles the transmission of the incident laser beam to the interior material. By comparing inflow energy and outflow energy, there exits an energy balance on the keyhole wall by balancing the absorbed laser intensity and heat flux on the wall.  相似文献   

8.
Many industrial applications of high-power lasers involve the creation by vaporization of a keyhole in a solid target. This structure is unstable with respect to collapse and can be maintained only by achieving a balance between pressure terms from laser vaporization and those of surface tension and hydrostatics. In addition, liquid flow and plasma effects also modulate the laser beam intensity resulting in a complex feedback system in coupling laser radiation into the target. In this paper, we report data obtained on the time dependence of structures associated with laser drilling of an absorbing liquid. These data, obtained at low incident laser intensities in the absence of plasma effects, show the complex nature of the laser-keyhole interaction even in a two-phase system. Some results of experiments carried out in low gravity are also presented.  相似文献   

9.
Laser material processing, being a non-contact process, minimizes many of the complexities involved in the decontamination and decommissioning of nuclear facilities. A high power laser beam incident on a concrete surface can produce spalling, glazing or vaporization, depending upon the laser power density and scan speed. This paper presents effect of various laser processing parameters on the efficiency of material removal by surface spalling and glazing. The size of laser beam at constant fluence or energy density had significantly different effect on the spalling process. In thick concrete block cutting the flow or removal of molten material limits the cutting depth. By employing repeated laser glazing followed by mechanical scrubbing process cutting of 150 mm thick concrete block was carried out. Gravitation force was utilized for molten materials to flow out while drilling holes on vertical concrete walls. The dependence of the incident laser beam angle on drilling time was experimentally studied.  相似文献   

10.
Feasibility in using electric and magnetic fields as a plasma control tool during high-power laser welding is explored in this paper. Preliminary results indicated that both fields can influence the shielding effect of the plasma above the keyhole. It was found that at suitable field parameters the penetration depth can be increased by more than 13%. Moreover, under the effect of both fields, the interrelation between the penetration depth and the width of bead was found. In addition, the influence of both electric and magnetic fields strength, field direction and laser power on the penetration depth and the width of bead were also investigated.  相似文献   

11.
比较了绿激光经尿道水下汽化前列腺手术与其它传统几种手术的性能、特点,阐述了绿激光汽化前列腺的优势:手术属微创,手术时间短,无出血,无需或只需短时间插尿管,恢复快,副作用较小,比较安全等.绿激光前列腺手术的特点是由绿激光水下汽化生物组织的机理决定的.532nm波长的绿激光在汽化前列腺时,几乎可以透过水,激光能量主要集中于组织表面的,表面效应好,同时又有一定的体效应,可以较快地汽化组织,又具有较好的止血效果.  相似文献   

12.
In pulsed laser drilling, melt ejection greatly influences the keyhole shape and its quality as well, but its mechanism has not been well understood. In this paper, numerical simulation and experimental investigations based on 304 stainless steel and aluminum targets are performed to study the effects of material parameters on melt ejection. The numerical method is employed to predict the temperatures, velocity fields in the solid, liquid, and vapour front, and melt pool dynamics of targets as well. The experimental methods include the shadow-graphic technique, weight method, and optical microscope imaging, which are applied to real-time observations of melt ejection phenomena, measurements of collected melt and changes of target mass, observations of surface morphology and the cross-section of the keyhole, respectively. Numerical and experimental results show that the metallic material with high thermal diffusivity like aluminum is prone to have a thick liquid zone and a large quantity of melt ejection. Additionally, to the best of our knowledge, the liquid zone is used to illustrate the relations between melt ejection and material thermal diffusivity for the first time. The research result in this paper is useful for manufacturing optimization and quality control in laser-material interaction.  相似文献   

13.
本文介绍了喷钙脱硫系统的实验研究结果,在调试工况和Ca/S=2.13下采用增湿活化器能增加脱硫率12.2%;此值和液滴蒸发所需时间有关。本文还利用多脉冲激光全息冷态试验台,对雾化液滴与固体颗粒的碰撞做了初步研究,证实了碰撞的存在,为增湿脱硫机理中的碰撞模型提供了依据。  相似文献   

14.
Low-power laser/arc hybrid welding process of magnesium alloy shows that the weld capability of tungsten-inert-gas arc is improved under the action of laser pulses. The effect of laser pulse on arc plasma is analyzed by studying the plasma spectra, plasma shapes, and arc voltage in this paper. On the one hand, laser pulse attracts arc plasma to laser keyhole and improves the stability of arc plasma; on the other hand, laser pulse expands the arc plasma and concentrates the electric conducting route of arc plasma. All these increase the output power and energy density of arc plasma, so the welding penetration is improved. In addition, laser pulses are controlled to act on the negative wave of alternating-current arc (the target metal has negative polarity) in hybrid welding process to improve the stability of arc plasma and weld penetration.   相似文献   

15.
A study was undertaken to investigate the effect of a high pressure gas environment on the laser welding mechanism. This was specifically related to high power CO2 lasers in the power range between 1.2 and 5 kW. A small high pressure chamber rated up to 150 bar was utilized for the trials. Successful laser welding was completed up to a pressure of 50 bar in the pressurized helium environment. The chamber was modified to incorporate a high pressure transmissive zinc selenide window and internal focusing optics. The initial welds exhibited wide and shallow profiles indicating a loss of keyhole penetration welding. By filming the welding action the problem was found to be the formation of a plasma approximately an order of magnitude larger than in normal atmospheric conditions. The solution was to implement a gas jet system and to use a higher power laser. The resulting welds in terms of penetration and quality were significantly improved.  相似文献   

16.
An investigation of long pulsed laser induced damage in sapphire   总被引:1,自引:0,他引:1  
The formation of keyhole and transverse section of a laser-cut kerf with slight stripe undulations by a 1064 nm ms pulse laser on (0 0 0 1) sapphire was investigated. The morphologies of keyhole and transverse section surfaces were evaluated by SEM, and the composition of transverse section of laser-cut kerf was evaluated by EDS, XRD and XPS. The time scale for onset of vaporization and the keyhole depth with different laser pulse energies were calculated. The result suggests that the depth of keyhole is approximately directly proportional to laser pulse energy. On sapphire transverse section surface, the element ratio of Al to O deviates from the stoichiometry of sapphire, perhaps due to the oxygen removal from surface.  相似文献   

17.
In laser remote welding using a scanner, high-speed welding can be achieved by using a 6-axial robot and a galvanometric mirror. In this system, because the laser projection point changes depending on the mirror's position, coaxial monitoring is required to track welding phenomena.This paper presents coaxial monitoring of the keyhole generated by an Yb:YAG laser beam during laser lap welding of steel and Al sheets. A coaxial image camera and a coaxial illumination laser are integrated into the proposed monitoring system. The areas of the keyhole and the full penetration hole were calculated by image processing, and their behaviours were investigated under various welding conditions. The keyhole was monitored using various band-pass filters and a coaxial illumination laser. Adequate filters were suggested for steel and Al alloy welding.  相似文献   

18.
The physical process of deep penetration laser welding involves complex, self-consistent multiphase keyhole, metallic vapor plume, and weld pool dynamics. Currently, efforts are still needed to understand these multiphase dynamics. In this paper, a novel 3D transient multiphase model capable of describing a self-consistent keyhole, metallic vapor plume in the keyhole, and weld pool dynamics in deep penetration fiber laser welding is proposed. Major physical factors of the welding process, such as recoil pressure, surface tension, Marangoni shear stress, Fresnel absorptions mechanisms, heat transfer, and fluid flow in weld pool, keyhole free surface evolutions and solid–liquid–vapor three phase transformations are coupling considered. The effect of ambient pressure in laser welding is rigorously treated using an improved recoil pressure model. The predicated weld bead dimensions, transient keyhole instability, weld pool dynamics, and vapor plume dynamics are compared with experimental and literature results, and good agreements are obtained. The predicted results are investigated by not considering the effects of the ambient pressure. It is found that by not considering the effects of ambient pressure, the average keyhole wall temperature is underestimated about 500 K; besides, the average speed of metallic vapor will be significantly overestimated. The ambient pressure is an essential physical factor for a comprehensive understanding the dynamics of deep penetration laser welding.  相似文献   

19.
Femtosecond laser ablation of an amorphous alloy in air, including single-pulse ablation, multi-pulse drilling and trenching has been investigated. Laser-induced ablation and related effects were examined by means of scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy and electron diffraction. Oxidation was observed in the multi-pulse ablation region surface. With selected parameters, molten trace, spatter and crystallization can be avoided in the vicinity of the machining area. The results show that femtosecond laser ablation with selected parameters is a promising method for micromachining amorphous alloys. PACS 79.20.Ds; 87.80.Mj; 81.05.Bx; 81.65.Mq; 61.82.Bg  相似文献   

20.
In laser processes, the absorption factor of laser Nd:YAG by metals plays a very important role. In order to model laser welding, we need to know its evolution during the process. The theoretical calculation does not enable the prediction of the absorption factor in the case of a keyhole mode. It is difficult to predict the effect of plasma and recoil pressure on the shape of the keyhole. In this paper, an integrating sphere is used to determine the absorption factor during the laser process, which is carried out on two types of magnesium alloys (WE43 and RZ5) and an aluminum alloy. We obtain the evolution in time of the absorption factor according to different steps of the evolution of the keyhole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号