首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work we report on the electrochemical behavior of Ce(IV)/Ce(III) redox couple in pure N,N-dialkyl amides (N,N-DA), namely N,N-di(2-ethylhexyl)-n-butanamide (DEHBA), N,N-di(2-ethylhexyl)-iso-butanamide (DEHiBA), and N,N-di(2-ethylhexyl)-3,3-dimethyl butanamide (DEHDMBA) equilibrated with nitric aqueous solutions as an entry to the direct electrochemical characterization of plutonium in these extractants. Ce(IV)/Ce(III) redox process was used as a model. Its potential (E1/2≅1.02 V/SCE) is not affected by the temperature and the nature of the N,N-DA and this clearly indicates that the functionalities of these extractants produce the same relative effect on both +IV and +III oxidation states of the cerium cation. Linear variations of the current intensity of the reduction peak of Ce(IV) with the concentration of Ce(IV)/N,N-DAs/HNO3(5 M) solutions were obtained from cyclic voltammograms recorded at 25 °C and 40 °C. Due to the poor definition of the voltammograms in DEHiBA and DEHDMBA, such characterization allows only the evaluation of the performances of the chemical extraction of Ce(IV) from aqueous nitric acid solution by the undiluted DEHBA. To our knowledge, the electrochemical behavior of Ce(IV)/Ce(III) in N,N-DAs was not previously studied and our findings will for sure open the door for further investigations in this field.  相似文献   

2.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

3.
Anodically polymerized films of nickel salen formed on glassy carbon, optically transparent tin oxide, and platinum electrodes in acetonitrile containing tetramethylammonium tetrafluoroborate have been examined by means of cyclic voltammetry, thin-layer voltammetry, spectroelectrochemistry, and scanning electron microscopy. With the aid of thin-layer voltammetry, it has been confirmed that the global oxidative polymerization of nickel(II) salen involves three electrons per monomer. Polymerization proceeds through two distinct phases, the formation of which depend on the potential. Once the polymer film has been formed, the anodic process consists of the reversible one-electron nickel(III)/nickel(II) redox couple. Cyclic voltammetry along with spectroelectrochemistry has been employed to probe the roles of the nickel(III)/nickel(II) and nickel(II)/nickel(I) redox couples in the electrochemical response of the polymer film as well as the interconversion of the different oxidation states of nickel.  相似文献   

4.
In this paper the electrochemical behavior of hemoglobin (Hb) immobilized on a pencil lead electrode (PLE) was investigated. Immobilization of Hb on the pencil lead electrode was performed by nonelectrochemical and electrochemical methods. In phosphate buffer solution with pH 7.0 Hb showed a pair of well‐defined and nearly reversible redox waves (the anodic and cathodic peak potentials are located at ?0.18 V and ?0.22 V, respectively). The dependence of the anodic peak potential (Epa) on the pH of the buffer solution indicated that the conversion of Hb? Fe(III)/Hb? Fe(II) is a one‐electron‐transfer reaction process coupled with one‐proton‐transfer. In addition the effect of scan rate on peak currents and peak separation potential was investigated and electrochemical parameters such as α and ks were calculated. In the second part of this work, the ability of the electrode for determination of Hb concentration was investigated. The results showed a linear dynamic range from 0.15 to 2 µM and a detection limit of 0.11 µM. The relative standard deviation is 4.1 % for 4 successive determinations of a 1 µM Hb solution.  相似文献   

5.
A series of oxo-bridged diosmium complexes with tpa ligand (tpa = tris(2-pyridylmethyl)amine) are synthesized. The hydrolytic reaction of the mononuclear osmium complex [Os(III)Cl(2)(tpa)]PF(6) in aqueous solution containing a sodium carboxylate yields a μ-oxo-μ-carboxylato-diosmium(III) complex, [Os(III)(2)(μ-O)(μ-RCOO)(tpa)(2)](PF(6))(3) (R = C(3)H(7) (1), CH(3) (2), or C(6)H(5) (3)). One-electron oxidation of 1 with (NH(4))(2)Ce(IV)(NO(3))(6) gives a mixed-valent [Os(III)Os(IV)(μ-O)(μ-C(3)H(7)COO)(tpa)(2)](PF(6))(4) complex (4). A mixed-valent di-μ-oxo-diosmium complex, [Os(III)Os(IV)(μ-O)(2)(tpa)(2)](PF(6))(3) (5), is also synthesized from 1 in an aerobic alkaline solution (pH 13.5). All the complexes exhibit strong absorption bands in a visible-near-infrared region based on interactions of the osmium dπ and oxygen pπ orbitals of the Os-O-Os moiety. The X-ray crystallographic analysis of 1, 3, and 4 shows that the osmium centers take a pseudo-octahedral geometry in the μ-oxo-μ-carboxylato-diosmium core. The mixed-valent osmium(III)osmium(IV) complex 4 has a shorter osmium-oxo bond and a larger osmium-oxo-osmium angle as compared with those of the diosmium(III) complex 1 having the same bridging carboxylate. Crystal structure of 5 reveals that the two osmium ions are bridged by two oxo groups to give an Os(2)(μ-O)(2) core with the significantly short osmium-osmium distance (2.51784(7) ?), which is indicative of a direct osmium-osmium bond formation with the bond order of 1.5 (σ(2)π(2)δ(2)δ*(2)π*(1) configuration). In the electrochemical studies, the μ-oxo-μ-carboxylato-diosmium(III) complexes exhibit two reversible Os(III)Os(III)/Os(III)Os(IV) and Os(III)Os(IV)/Os(IV)Os(IV) oxidation couples and one irreversible redox wave for the Os(III)Os(III)/Os(II)Os(III) couple in CH(3)CN. The irreversible reductive process becomes reversible in CH(3)CN/H(2)O (1:1 Britton-Robinson buffer; pH 5-11), where the {1H(+)/2e(-)} transfer process is indicated by the plot of the redox potentials against the pH values of the solution of 1. Thus, the μ-oxo-μ-butyrato-diosmium(III) center undergoes proton-coupled electron transfer to yield a μ-hydroxo-μ-butyrato-diosmisum(II) species. The di(μ-oxo) complex 5 exhibits one reversible Os(III)Os(IV)/Os(IV)Os(IV) oxidation process and one reversible Os(III)Os(IV)/Os(III)Os(III) reduction process in CH(3)CN. The comproportionation constants K(com) of the Os(III)Os(IV) states for the present diosmium complexes are on the order of 10(19). The values are significantly larger when compared with those of similar oxo-bridged dimetal complexes of ruthenium and rhenium.  相似文献   

6.
Direct electrochemical and electrocatalytic behavior of myoglobin (Mb) immobilized on carbon paste electrode (CPE) by a silica sol-gel film derived from tetraethyl orthosilicate was investigated for the first time. Mb/sol-gel film modified electrodes show a pair of well-defined and nearly reversible cyclic voltammetric peaks for the Mb Fe(III)/Fe(II) redox couple at about -0.298 V (vs Ag/AgCl) in a pH 7.0 phosphate buffer solution. The formal potential of the Mb heme Fe(III)/Fe(II) couple shifted linearly with pH with a slope of 52.4 mV/pH, denoting that an electron transfer accompanies single-proton transportation. An FTIR and UV-vis spectroscopy study confirms that the secondary structure of Mb immobilized on an electrode by a sol-gel film still maintains the original arrangement. The immobilized Mb displays the features of a peroxidase and acts in an electrocatalytic manner in the reduction of oxygen, trichloroacetic acid (TCA), and nitrite. In comparison to other electrodes, the chemically modified electrodes used in this study for direct electrochemistry and electrocatalysis of Mb are easy to fabricate and fairly inexpensive. Consequently, the Mb/sol-gel film modified electrode provides a convenient way to perform electrochemical research on this kind of protein. It also has potential use in the fabrication of bioreactors and third-generation biosensors.  相似文献   

7.
Sulfur-rich nickel metalloenzymes are capable of stabilizing Ni(I) and Ni(III) oxidation states in catalytically relevant species. In an effort to better understand the structural and electronic features that allow the stabilization of such species, we have investigated the electrochemical properties of two mononuclear N(2)S(2) Ni(II) complexes that differ in their sulfur environment. Complex 1 features aliphatic dithiolate coordination ([NiL], 1), and complex 2I is characterized by mixed thiolate/thioether coordination ([NiL(Me)]I, 2I). The latter results from the methylation of a single sulfur of 1. The X-ray structure of 2I reveals a distorted square planar geometry around the Ni(II) ion, similar to what was previously reported by us for 1. The electrochemical investigation of 1 and 2(+) shows that the addition of a methyl group shifts the potentials of both redox Ni(II)/Ni(I) and Ni(III)/Ni(II) redox couples by about 0.7 and 0.6 V to more positive values. Through bulk electrolyses, only the mononuclear dithiolate [Ni(I)L](-) (1(-)) and the mixed thiolate/thioether [Ni(III)L(Me)](2+) (2(2+)) complexes were generated, and their electronic properties were investigated by UV-vis and EPR spectroscopy. For 1(-) (Ni(I), d(9) configuration) the EPR data are consistent with a d(x(2))(-)(y(2)) based singly occupied molecular orbitals (SOMOs). However, DFT calculations suggest that there is also pronounced radical character. This is consistent with the small g-anisotropy observed in the EPR experiments. The spin population (Mulliken analysis) analysis of 1(-) reveals that the main contribution to the SOMO (64%) is due to the bipyridine unit. Time dependent density functional theory (TD-DFT) calculations attribute the most prominent features observed in the electronic absorption spectrum of 1(-) to metal to ligand charge transfer (MLCT) transitions. Concerning 2(2+), the EPR spectrum displays a rhombic signal with g(x) = 2.236, g(y) = 2.180, and g(z) = 2.039 in CH(3)CN. The g(iso) value is larger than 2.0, which is consistent with metal based oxidation. The unpaired electron (Ni(III), d(7) configuration) occupies a Ni-d(z(2)) based molecular orbital, consistent with DFT calculations. Nitrogen hyperfine structure is observed as a triplet in the g(z) component of the EPR spectrum with A(N) = 51 MHz. This result indicates the coordination of a CH(3)CN molecule in the axial position. DFT calculations confirm that the presence of a fifth ligand in the coordination sphere of the Ni ion is required for the metal-based oxidation process. Finally, we have shown that 1 exhibits catalytic reductive dehalogenation activity below potentials of -2.00 V versus Fc/Fc(+) in CH(2)Cl(2).  相似文献   

8.
The aqueous chemistry of Ti(III) and Ti(IV) in two different chemical environments is investigated given its relevance to environmental, materials, and biological chemistry. Complexes of titanium with the carboxylate ligands citrate and oxalate, found ubiquitously in Nature, were synthesized. The redox properties were studied by using cyclic voltammetry. All the titanium citrate redox couples are quasi-reversible. Electrospray mass spectrometry of the Ti(III) citrate solution shows the presence of a 1:2 Ti/cit complex in solution, in contrast to the predominant 1:3 Ti/cit complex with Ti(IV). The change in the coordination of the ligand to the metal on reduction may explain the quasi-reversible behavior of the electrochemistry. The redox potentials for Ti(IV) citrate in water vary with pH. At pH 7, the approximate E(1/2) is less than -800 mV. This stated change in redox properties is considered in light of the previously reported Ti(IV) citrate solution speciation. Analogous speciation behavior is suggested from the EPR spectroscopy of Ti(III) citrate aqueous solutions. The g tensors are deduced for several pH-dependent species from the simulated data. The X-ray crystal structure of a Ti(III)(2) oxalate dimer Ti(2)(mu-C(2)O(4))(C(2)O(4))(2)(H(2)O)(6).2H(2)O (3), which crystallizes from water below pH 2, is reported. Complex 3 crystallizes in a monoclinic P2(1)/c space group with a = 9.5088(19) Angstroms, b = 6.2382(12) Angstroms, c = 13.494(3) Angstroms, V = 797.8(3) Angstroms(3), and Z = 2. The infrared spectroscopy, EPR spectroscopy, and cyclic voltammetry on complex 3 are reported. The cyclic voltammetry shows an irreversible redox couple approximately -196 mV which likely corresponds to the Ti(IV)(2)/Ti(III)Ti(IV) couple. The EPR spectroscopy on solid complex 3 shows a typical S = 1 triplet-state spectrum. The solid follows non-Curie behavior, and the antiferromagnetic coupling between the two metal centers is determined to be -37.2 cm(-1). However, in solution the complex follows Curie behavior and supports a Ti(III)Ti(IV) oxidation state for the dimer.  相似文献   

9.
Cheung KC  Guo P  So MH  Zhou ZY  Lee LY  Wong KY 《Inorganic chemistry》2012,51(12):6468-6475
Ruthenium(II) terpyridine complexes containing the pyrrole-tagged 2,2'-dipyridylamine ligand PPP (where PPP stands for N-(3-bis(2-pyridyl)aminopropyl)pyrrole with the general formula [Ru(tpy)(PPP)X](n+) (1, X = Cl(-); 2, X = H(2)O; 3, X = CH(3)CN; tpy = 2,2':6',2"-terpyridine) have been synthesized and characterized by (1)H NMR, IR, UV-vis, mass spectrometry, and elemental analysis. 1 and 2 have been structurally characterized by X-ray crystallography. Both 1 and 2 were successfully immobilized onto glassy carbon electrode via anodic oxidation of the pyrrole moiety on the PPP ligand to give stable and highly electroactive polymer films. Cyclic voltammetric studies of 1 in acetonitrile revealed a Ru(III)/Ru(II) couple at 0.4 V vs Cp(2)Fe(+/0) initially, but another redox couple resulting from chloride substitution by acetonitrile developed at E(1/2) = 0.82 V upon repetitive potential scan. This ligand substitution was induced by the acidic local environment caused by the release of protons during pyrrole polymerization. The electropolymerization of 2 in aqueous medium allowed the observation of the formation of Ru(IV)═O species in polypyrrole film. As the film grew thicker, the size of the Ru(III)/(/)Ru(II) couple (E(1/2) = 0.8 V vs SCE at pH 1) of poly[Ru(tpy)(PPP)(OH(2))](n+) increased accordingly, whereas the growth of the Ru(IV)/Ru(III) couple (E(1/2) = 0.89 V vs SCE at pH 1) leveled off after the film had reached a certain thickness. The Pourbaix diagram of the E(1/2) of the Ru(III) /Ru(II) and Ru(IV)/Ru(III) couples vs pH of the electrolyte medium has been obtained. The resulting poly[Ru(tpy)(PPP)(OH(2))](n+) film is electrocatalytically active toward the oxidation of benzyl alcohol.  相似文献   

10.
《Electroanalysis》2005,17(10):862-868
The direct electron transfer and electrocatalysis of horseradish peroxidase (HRP) immobilized on hexagonal mesoporous silicas (HMS) matrix was studied. The interaction between HRP and HMS was examined by using Fourier transform infrared spectroscopy, nitrogen adsorption isotherms and electrochemical methods. The immobilized HRP at a modified glassy carbon electrode showed a good direct electrochemical behavior, which depended on the specific properties of the HMS. Two couples of redox peaks corresponding to Fe(III) to Fe(II) conversion of the HRP intercalated in the mesopores and adsorbed on the external surface of the HMS were observed with the formal potentials of ?0.315 and ?0.161 V in 0.1 M pH 7.0 PBS, respectively. The amount of HRP intercalated in the mesopores of HMS proved to be related to the pore size. The HRP intercalated in the mesopores showed a surface controlled electrode process with a single proton transfer. The immobilized HRP displayed an excellent electrocatalytic response to the reduction of hydrogen peroxide (H2O2) without the aid of an electron mediator. The HMS provided a novel matrix for protein immobilization and direct electron transfer study of the immobilized protein.  相似文献   

11.
《Electroanalysis》2017,29(4):1056-1061
Functionalized high purity carbon nanotubes (CNTs) with various amounts of oxygen containing surface groups were investigated towards the relevant redox reactions of the all‐vanadium redox flow battery. The quinone/hydroquinone redox peaks between 0.0 and 0.7 V vs. Ag|AgCl|KClsat. were used to quantifying the degree of functionalization and correlated to XPS results. Cyclic voltammetry in vanadyl sulfate‐containing 3 M H2SO4 as a common supporting electrolyte showed no influence of the amount of surface groups on the V(IV)/V(V) redox system. In contrast, the reactions occurring at the negative electrode (V(II)/V(III) and V(III)/V(IV)) are strongly affected by oxygen surface groups. However, under modified experimental conditions, SECM experiments detecting the consumption of VO2+ molecules by CNT thin films in pH=2 solution show improved onset potentials with increased surface oxygen content up to ∼ 3 at%. Further increase in surface oxygen up to 8 at% led to minor improvement. These dissimilar results under different experimental conditions are rationalized by suggesting that oxygen functional groups do not form the active site for the V(IV)/V(V) reaction but wetting of the catalyst layer is of high importance.  相似文献   

12.
In this research, a modified electrode has been produced during the electropolymerization of 4-Aminobenzoic acid in the presence of sodium dodecylsulfate (SDS) and then Ni(II) ions were incorporated to the polymer by immersion of the modified electrode in a 0.1 M Ni(II) ions solution. The electrochemical behavior of Ni/poly(4-aminobenzoic acid)/sodium dodecylsulfate/carbon paste electrode (Ni/poly(4-AB)/SDS/CPE) was investigated by using cyclic voltammetry. The experimental results exhibited the stable redox behavior of the Ni(III)/Ni(II) couple immobilized at the polymeric electrode. This polymeric modified electrode has a very good activity toward the sulfite electrooxidation in a phosphate buffer solution (pH 11). By comparison of the different responses to sulfite oxidation using electrodes Ni/poly(4-AB)/SDS/CPE, poly(4-AB)/SDS/CPE and CPE, we observed that the former electrode is a more effective catalyst for the electrooxidation of sulfite. Under optimal experimental conditions, the peak current response increased linearly with sulfite concentration over the range of 0.1–1 and 1–10 mM. The detection limit of the method was 0.063 mM. Finally, the method was applied to the determination of sulfite in weak liquor sample.  相似文献   

13.
The redox behavior of tricyclopentadienyl- and phospholyluranium(IV) chloride complexes L(3)UCl with L = C(5)H(5) (Cp), C(5)H(4)Me (MeCp), C(5)H(4)SiMe(3) (TMSCp), C(5)H(4)(t)Bu ((t)BuCp), C(5)Me(5) (Cp*), and C(4)Me(4)P (tmp), has been investigated using relativistic density functional theory calculations, with the solvent being taken into account using the conductor-like screening model. A very good linear correlation (r(2) = 0.99) has been obtained between the computed electron affinities of the L(3)UCl complexes and the experimental half-wave reduction potentials E(1/2) related to the U(IV)/U(III) redox systems. From a computational point of view, our study confirms the crucial importance of spin-orbit coupling and solvent corrections and the use of an extended basis set in order to achieve the best experiment-theory agreement. Considering oxidation of the uranium(IV) complexes, the instability of the uranium(V) derivatives [L(3)UCl](+) is revealed, in agreement with experimental electrochemical findings. The driving roles of both the electron-donating ability of the L ligand and the U 5f orbitals on the redox properties of the complexes are brought to light. Interestingly, we found and explained the excellent correlation between variations of the uranium Hirschfeld charges following U(IV)/U(III) electron capture and E(1/2). In addition, this work allowed one to estimate theoretically the half-wave reduction potential of [Cp*(3)UCl].  相似文献   

14.
Stable thin films made from dimyristoyl phosphatidylcholine (DMPC) with incorporated hemoglobin (Hb) on pyrolytic graphite (PG) electrodes were characterized by electrochemical and other techniques. Cyclic voltammetry (CV) of Hb-DMPC films showed a pair of well-defined and nearly reversible peaks at about -0.27 V vs. saturated calomel electrode (SCE) at pH 5.5, characteristic of Hb heme Fe(III)/Fe(II) redox couple. The electron transfer between Hb and PG electrodes was greatly facilitated in DMPC films. Apparent heterogeneous rate constants (ks) were estimated by fitting square wave voltammograms of Hb-DMPC films to a model featuring thin layer behavior and dispersion of formal potentials for redox center. The formal potential of Hb heme Fe(III)/Fe(II) couple in DMPC films shifted linearly between pH 4.5 to 11 with a slope of -48 mV pH-1, suggesting that one proton is coupled to each electron transfer in the electrochemical reaction. Soret absorption band positions suggest that Hb retains a near native conformation in DMPC films at medium pH. Differential scanning calorimetry (DSC) showed the phase transition for DMPC and Hb-DMPC films, suggesting DMPC has an ordered multibilayer structure. Trichloroacetic acid (TCA) was catalytically reduced by Hb-DMPC films with significant decreases in the electrode potential required.  相似文献   

15.
Room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) was used as a binder to construct a new carbon ionic liquid electrode (CILE), which exhibited enhanced electrochemical behavior as compared with the traditional carbon paste electrode with paraffin. By using the CILE as the basal electrode, hemoglobin (Hb) was immobilized on the surface of the CILE with nano-CaCO3 and Nafion film step by step. The Hb molecule in the film kept its native structure and showed good electrochemical behavior. In pH 7.0 Britton-Robinson (B-R) buffer solution, a pair of well-defined, quasi-reversible cyclic voltammetric peaks appeared with cathodic and anodic peak potentials located at -0.444 and -0.285 V (vs SCE), respectively, and the formal potential (E degrees') was at -0.365 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The formal potential of Hb shifted linearly to the increase of buffer pH with a slope of -50.6 mV pH-1, indicating that one electron transferred was accompanied with one proton transportation. Ultraviolet-visible (UV-vis) and Fourier transform infrared (FT-IR) spectroscopy studies showed that Hb immobilized in the Nafion/nano-CaCO3 film still remained its native arrangement. The Hb modified electrode showed an excellent electrocatalytic behavior to the reduction of H2O2, trichloroacetic acid (TCA), and NaNO2.  相似文献   

16.
Syntheses and pH dependent electrochemical properties of aqua-ruthenium(II) complexes, [Ru(trpy)(PDA-N,N')(OH2)](ClO4)2 ([1](ClO4)2) and [Ru(trpy)(PD-N,N')(OH2)](ClO4)2 ([2](ClO4)2) (trpy = 2,2':6',2'-terpyridine, PDA = 6-acetonyl-6-hydroxy-1,10-phenanthroline-5-one, PD = 1,10-phenanthroline-5,6-dione) are presented. Treatment of [Ru(trpy)(PD-N,N')Cl](PF6) with AgClO4 in a mixed solvent of acetone and H2O selectively produced the acetonyl-PD complex [1](ClO4)2, and the similar treatment in a mixed solvent of 2-methoxyethanol and H2O gave the PD complex [2](ClO4)2. The molecular structures of both complexes were determined by X-ray structural analysis. The proton dissociation constants of various oxidations state of [1]2+ and [2]2+ were evaluated by simulation of E(1/2) values of those redox potentials depending on pH. The simulation revealed that the acetonyl-PD complex [1]2+ underwent successive Ru(II)/Ru(III) and Ru(III)/Ru(IV) redox couples though the two redox reactions were not separated in the cyclic voltammograms. The redox behavior of [2]2+ in H2O is reasonably explained by not only the similar successive metal-centered redox reactions but also simultaneous two-electron quinone/catechol redox couple of the PD ligand including the contribution of hydration on a carbonyl carbon.  相似文献   

17.
Cobalt(II) complexes of N-methyl phenyl, 1-phenylpiperazyl, and morpholinyl dithiocarbamates have been synthesized and characterized by UV–Visible, FTIR, 1H-, 13C-NMR, and mass spectrometry. The spectroscopic data indicated that two ligands coordinated in bidentate chelating to the metal ion to form four-coordinate cobalt(II) complexes (13), which was confirmed by mass analysis (TOF MS ES+) of the complexes with m/z [M]+ = 450.98, 382.94, and 382.94 for 1, 2, and 3, respectively. Single crystal analysis of 2A and 3A show centrosymmetric mononuclear cobalt(III) bonded to three dithiocarbamate ligands forming a distorted octahedral geometry, indicating the cobalt(II) undergoes aerial oxidation to cobalt(III) during recrystallization. In addition, 2A crystallized with one solvated molecule of toluene. The redox behaviors of the complexes were studied by cyclic and square wave voltammetry in dichloromethane; the result revealed a metal centered redox process consisting of a one-electron quasi-reversible process assigned to Co(III)/Co(IV) oxidation and a corresponding Co(IV)/Co(III) reduction. Randles–Sevcik plots (anodic peak current versus the square root of the scan rate (Ip,a versus ν1/2)) for the redox couples revealed diffusion-controlled behavior.  相似文献   

18.
19.
The reactions of a water-soluble iron(III)-porphyrin, [meso-tetrakis(sulfonatomesityl)porphyrinato]iron(III), [Fe(III)(tmps)] (1), with m-chloroperoxybenzoic acid (mCPBA), iodosylbenzene (PhIO), and H(2)O(2) at different pH values in aqueous methanol solutions at -35 degrees C have been studied by using stopped-flow UV/Vis spectroscopy. The nature of the porphyrin product resulting from the reactions with all three oxidants changed from the oxo-iron(IV)-porphyrin pi-cation radical [Fe(IV)(tmps(*+))(O)] (1(++)) at pH<5.5 to the oxo-iron(IV)-porphyrin [Fe(IV)(tmps)(O)] (1(+)) at pH>7.5, whereas a mixture of both species was formed in the intermediate pH range of 5.5-7.5. The observed reactivity pattern correlates with the E degrees' versus pH profile reported for 1, which reflects pH-dependent changes in the relative positions of E degrees'(Fe(IV)/Fe(III) ) and E degrees'(P(*+)/P) for metal- and porphyrin-centered oxidation, respectively. On this basis, the pH-dependent redox equilibria involving 1(++) and 1(+) are suggested to determine the nature of the final products that result from the oxidation of 1 at a given pH. The conclusions reached are extended to water-insoluble iron(III)-porphyrins on the basis of literature data concerning the electrochemical and catalytic properties of [Fe(III)(P)(X)] species in nonaqueous solvents. Implications for mechanistic studies on [Fe(P)]-catalyzed oxidation reactions are briefly addressed.  相似文献   

20.
Electrochemical and complexation properties of neptunium (Np) are investigated in aqueous perchlorate and nitrate solutions by means of cyclic voltammetry, bulk electrolysis, UV-visible absorption, and Np L(III)-edge X-ray absorption spectroscopies. The redox reactions of Np(III)/Np(IV) and Np(V)/Np(VI) couples are reversible or quasi-reversible, while the electrochemical reaction between Np(III/IV) and Np(V/VI) is irreversible because they undergo structural rearrangement from spherical coordinating ions (Np(3+) and Np(4+)) to transdioxoneptunyl ions (NpO2(n+), n = 1 for Np(V) and 2 for Np(VI)). The redox reaction of the Np(V)/Np(VI) couple involves no structural rearrangement on their equatorial planes in acidic perchlorate and nitrate solutions. A detailed analysis on extended X-ray absorption fine structure (EXAFS) spectra suggests that Np(IV) forms a decaaquo complex of [Np(H2O)10](4+) in 1.0 M HClO4, while Np(V) and Np(VI) exist dominantly as pentaaquoneptunyl complexes, [NpO2(H2O)5](n+) (n = 1 for Np(V) and 2 for Np(VI)). A systematic change is observed on the Fourier transforms of the EXAFS spectra for all of the Np oxidation states as the nitrate concentration is increased in the sample, revealing that the hydrate water molecules are replaced by bidentate-coordinating nitrate ions on the primary coordination sphere of Np.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号