首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although application of light-fluorous techniques facilitates the isolation of reaction products from the hydrolytic kinetic resolution (HKR) of terminal epoxides catalysed by cobalt complexes of salen ligands, the extension of the original fluorous biphasic approach to this reaction is far from being a trivial exercise. The nature of the counter anion has a dramatic effect on the catalytic activity of heavily fluorinated chiral (salen) cobalt(III) complexes. Excellent enantioselectivities are obtained in the fluorous biphasic HKR of 1,2-hexene oxide when fluorinated anions are introduced (e.e.s up to 99% both for the diol and the epoxide), with C8F17COO- affording reaction rates even higher than those observed with non-fluorous systems.  相似文献   

2.
In the chiral Co(III)(salen)-catalysed HKR of racemic epoxides, in the presence of ionic liquids, Co(II)(salen) complex is oxidised without acetic acid to catalytically active Co(III)(salen) complex during reaction and, moreover, this oxidation state is stabilised against reduction to Co(II) complex which enables the reuse of the recovered catalyst for consecutive reactions without extra reoxidation.  相似文献   

3.
Shell cross-linked micelles (SCMs) containing Co(III)-salen cores were prepared from amphiphilic poly(2-oxazoline) triblock copolymers. The catalytic activity of these nanoreactors for the hydrolytic kinetic resolution of various terminal epoxides was investigated. The SCM catalysts showed high catalytic efficiency and, more significantly, substrate selectivity based on the hydrophobic nature of the epoxide. Moreover, because of the nanoscale particle size and the high stability, the catalyst could be recovered easily by ultrafiltration and reused with high activity for eight cycles.  相似文献   

4.
《Tetrahedron: Asymmetry》2003,14(22):3633-3638
The solvent-free hydrolytic kinetic resolution of terminal epoxides catalyzed by a new oligomeric (salen)Co complex 2 is described. Extremely low loadings of catalyst were used to provide all epoxides examined in good yields and >99% ee under ambient conditions within 24 h.  相似文献   

5.
A type of chiral salen complexes bearing Lewis acid, including FeCl3, AlCl3, ZnCl2, and SnCl4 has been synthesized. The prepared complexes proved to be reactive and enantioselective in the hydrolytic kinetic resolution of terminal epoxides. The catalysts could be recovered and reused several times with simple treatment after reaction, without loss of activity and enantioselectivity. (salen)Co(II) and Lewis acid in mol ratios of 1: 1, 1: 2, and 1: 3 showed the same activity, enatioselectivity, and stability. The characterization of the complexes in-situ generated by the reaction of (salen)Co(II) and Lewis acid in mol ratios of 1: 1, 1: 2, and 1: 3 in CH2Cl2 was performed by UV-Vis, which showed an identical spectrum and did not display any change along with the time prolonged. Thus, the present catalysts can be applicable for large scale processes for HKR reaction of racemic epoxides.  相似文献   

6.
The mechanism of the hydrolytic kinetic resolution (HKR) of terminal epoxides was investigated by kinetic analysis using reaction calorimetry. The chiral (salen)Co-X complex (X = OAc, OTs, Cl) undergoes irreversible conversion to (salen)Co-OH during the course of the HKR and thus serves as both precatalyst and cocatalyst in a cooperative bimetallic catalytic mechanism. This insight led to the identification of more active catalysts for the HKR of synthetically useful terminal epoxides.  相似文献   

7.
The (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides is a bimetallic process with a rate controlled by partitioning between a nucleophilic (salen)Co-OH catalyst and a Lewis acidic (salen)Co-X catalyst. The commonly used (salen)Co-OAc and (salen)Co-Cl precatalysts undergo complete and irreversible counterion addition to epoxide during the course of the epoxide hydrolysis reaction, resulting in quantitative formation of weakly Lewis acidic (salen)Co-OH and severely diminished reaction rates in the late stages of HKR reactions. In contrast, (salen)Co-OTs maintains high reactivity over the entire course of HKR reactions. We describe here an investigation of catalyst partitioning with different (salen)Co-X precatalysts and demonstrate that counterion addition to epoxide is reversible in the case of the (salen)Co-OTs. This reversible counterion addition results in stable partitioning between nucleophilic and Lewis acidic catalyst species, allowing highly efficient catalysis throughout the course of the HKR reaction.  相似文献   

8.
《Tetrahedron: Asymmetry》2003,14(22):3589-3592
The hydrolytic kinetic resolution of racemic terminal epoxides utilizing chiral (salen)Co(III) catalysts provides practical access to enantiopure epoxides and diols. However, general issues surrounding catalyst activation combined with the specific problem of racemization of epichlorohydrin served to make the large-scale production of (R)- or (S)-epichlorohydrin difficult and uneconomical. A process for the large-scale production and isolation of active (salen)Co(III)OAc catalyst and a method of catalyst reduction after reaction using ascorbic acid have been developed to overcome these issues.  相似文献   

9.
A series of novel bis-urea-functionalized (salen)Co complexes has been developed. The complexes were designed to form self-assembled structures in solution through intermolecular urea-urea hydrogen-bonding interactions. These bis-urea (salen)Co catalysts resulted in rate acceleration (up to 13 times) in the hydrolytic kinetic resolution (HKR) of rac-epichlorohydrin in THF by facilitating cooperative activation, compared to the monomeric catalyst. In addition, one of the bis-urea (salen)Co(III) catalyst efficiently resolves various terminal epoxides even under solvent-free conditions by requiring much shorter reaction time at low catalyst loading (0.03-0.05 mol %). A series of kinetic/mechanistic studies demonstrated that the self-association of two (salen)Co units through urea-urea hydrogen bonds was responsible for the observed rate acceleration. The self-assembly study with the bis-urea (salen)Co by FTIR spectroscopy and with the corresponding (salen)Ni complex by (1)H NMR spectroscopy showed that intermolecular hydrogen-bonding interactions exist between the bis-urea scaffolds in THF. This result demonstrates that self-assembly approach by using non-covalent interactions can be an alternative and useful strategy toward the efficient HKR catalysis.  相似文献   

10.
11.
12.
Studies aimed at immobilization of the Aspergillus niger epoxide hydrolase were performed. The use of conventional approaches, i.e. of commercially available supports and classical methodologies, only led to low stabilisation and unsatisfactory enzymatic activity recovery. Therefore, a new strategy based on the use of a "second generation" type of epoxy-activated supports allowing multi-point covalent immobilization, i.e. Eupergit C, partially modified with ethylene diamine (Eupergit C/EDA), and of an adequate experimental procedure was set up. This allowed us to prepare an immobilized biocatalyst with 70%, retention of the initial enzymatic activity and a stabilisation factor of about 30. Interestingly, this biocatalyst also led to a noticeable increase of the E value for the resolution of two test substrates, styrene oxide 1 and p-chlorostyrene oxide 2. This was improved from about 25 to 56 and from 40 to 100, respectively. A typical repeated batch experiment indicated that the thus immobilized enzyme could be re-used for over 12 cycles without any noticeable loss of enzymatic activity or change in enantioselectivity. This therefore opens the way for the use of an 'heterogeneous catalysis' methodology for achieving the preparation of various enantiopure epoxides via biocatalysed hydrolytic kinetic resolution.  相似文献   

13.
In the presence of the third generation Grubbs catalyst, the ring-expanding olefin metathesis of a monocyclooct-4-en-1-yl functionalized salen ligand and the corresponding Co(II)(salen) complex at low monomer concentrations results in the exclusive formation of macrocyclic oligomeric structures with the salen moieties being attached in an unsymmetrical, flexible, pendent manner. The TOF-MALDI mass spectrometry reveals that the resulting macrocyclic oligomers consist predominantly of dimeric to tetrameric species, with detectable traces of higher homologues up to a decamer. Upon activation under aerobic and acidic conditions, these Co(salen) macrocycles exhibit extremely high reactivities and selectivities in the hydrolytic kinetic resolution (HKR) of a variety of racemic terminal epoxides under neat conditions with very low catalyst loadings. The excellent catalytic properties can be explained in terms of the new catalyst's appealing structural features, namely, the flexible oligomer backbone, the unsymmetrical pendent immobilization motif of the catalytic sites, and the high local concentration of Co(salen) species resulting from the macrocyclic framework. This ring-expanding olefin metathesis is suggested to be a simple way to prepare tethered metal complexes that are endowed with key features--(i) a high local concentration of metal complexes and (ii) a flexible, single point of attachment to the support--that facilitate rapid and efficient catalysis when a bimetallic transition state is required.  相似文献   

14.
Priti Gupta 《Tetrahedron letters》2005,46(38):6571-6573
A short and practical enantioselective synthesis of tarchonanthuslactone has been achieved in high diastereomeric excess using iterative Jacobsen’s hydrolytic kinetic resolution and ring closing metathesis as the key steps.  相似文献   

15.
Template copolymerization methods have been utilized to prepare porous materials with immobilized cobalt complexes that catalyze the hydrolytic kinetic resolution of epoxides.  相似文献   

16.
17.
[formula: see text] The kinetic resolution of racemic epoxides via catalytic enantioselective rearrangement to allylic alcohols was investigated. Using the Li-salt of (1S,3R,4R)-3-(pyrrolidinyl)methyl-2-azabicyclo [2.2.1] heptane 1 as catalyst allowed both epoxides and allylic alcohols to be obtained in an enantioenriched form.  相似文献   

18.
19.
An efficient enantioselective synthesis of (R)- and (S)-massoialactone has been achieved. The key steps are the hydrolytic kinetic resolution of a racemic epoxyheptane with (R,R)-(salen)-CoIIIOAc complex and ring-closing metathesis of homoallylic alcohol derived acrylate esters using Grubb’s catalyst.  相似文献   

20.
《Tetrahedron: Asymmetry》2005,16(3):657-660
The recently developed hydrolytic kinetic resolution (HKR) of epoxides catalysed by the Co-Jacobsen catalyst, is one of the most useful methods to obtain enantiomerically pure epoxides and/or diols. Several parameters can significantly influence the homogeneous reaction. Several factors including the used solvent, the activation of the catalyst and the use of surfactants, are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号