共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The addition of carbon-centered radicals to ethene, which are important in free-radical polymerization processes, are studied from a theoretical point of view. Experimental data for the rate constants are only available for the addition of methyl, ethyl, propyl and butyl radicals. The latter reactions are taken as model systems to derive a cost-effective method for the addition of alkyl radicals to ethene. The proposed model must be accurate and computationally feasible for additions in which larger radicals are involved. Accuracy is validated by direct comparison of theoretical and experimental rate constants in the temperature range from 300 to 600 K. A variety of electronic-structure methods were tested ranging from Hartree-Fock and post-Hartree-Fock methods to pure and hybrid density functional theory methods. Molecular partition functions were refined by treating large amplitude vibrations beyond the harmonic oscillator approximation. 相似文献
3.
Debuigne A Champouret Y Jérôme R Poli R Detrembleur C 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(13):4046-4059
Over the past few years, cobalt-mediated radical polymerization (CMRP) has proved efficient in controlling the radical polymerization of very reactive monomers, such as vinyl acetate (VAc). However, the reason for this success and the intimate mechanism remained basically speculative. Herein, two mechanisms are shown to coexist: the reversible termination of the growing poly(vinyl acetate) chains by the Co(acac)2 complex (acac: acetylacetonato), and a degenerative chain-transfer process. The importance of one contribution over the other strongly depends on the polymerization conditions, including complexation of cobalt by ligands, such as water and pyridine. This significant progress in the CMRP mechanism relies on the isolation and characterization of the very first cobalt adducts formed in the polymerization medium and their use as CMRP initiators. The structure proposed for these adducts was supported by DFT calculations. Beyond the control of the VAc polymerization, which is the best ever achieved by CMRP, extension to other monomers and substantial progress in macromolecular engineering are now realistic forecasts. 相似文献
4.
5.
Nitroxide‐mediated ‘living’ free radical polymerisation (LREP) was employed for the first time to prepare graft copolymer by having arylated poly (vinyl chloride) (PVC‐Ph) as a backbone and polystyrene (PS) as branches. The graft copolymerization of styrene was initiated by arylated PVC carrying 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) groups as a macroinitiator. Thus, the arylated PVC was prepared in the mild conditions and these reaction conditions could overcome the problem of gelation and crosslinking in polymers. Then, 1‐hydroxy TEMPO was synthesized by the reduction of TEMPO with sodium ascorbate. This functional nitroxyl compound was coupled with brominated arylated PVC (PVC‐Ph‐Br). The resulting macro‐initiator (PVC‐Ph‐TEMPO) for ‘living’ free radical polymerization was then heated in the presence of styrene to form graft copolymer. DSC, GPC, 1HNMR, and FT‐IR spectroscopy were employed to investigate the structure of the polymers. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
6.
7.
Yuchuan Zhang Jiasheng Qian Zhuo KeXiangcheng Zhu Hong BiKangming Nie 《European Polymer Journal》2002,38(2):333-337
The intermolecular interactions between poly(vinyl chloride) (PVC) and poly(vinyl acetate) (PVAc) in tetrahydrofuran (THF), methyl ethyl ketone (MEK) and N,N′-dimethylformamide (DMF) were thoroughly investigated by the viscosity measurement. It has been found that the solvent selected has a great influence upon the polymer-polymer interactions in solution. If using PVAc and THF, or PVAc and DMF to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+THF) or (PVAc+DMF) is less than in corresponding pure solvent of THF or DMF. On the contrary, if using PVAc and MEK to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+MEK) is larger than in pure solvent of MEK. The influence of solvent upon the polymer-polymer interactions also comes from the interaction parameter term Δb, developed from modified Krigbaum and Wall theory. If PVC/PVAc blends with the weight ratio of 1/1 was dissolved in THF or DMF, Δb<0. On the contrary, if PVC/PVAc blends with the same weight ratio was dissolved in MEK, Δb>0. These experimental results show that the compatibility of PVC/PVAc blends is greatly associated with the solvent from which polymer mixtures were cast. The agreement of these results with differential scanning calorimetry measurements of PVC/PVAc blends casting from different solvents is good. 相似文献
8.
Debuigne A Michaux C Jérôme C Jérôme R Poli R Detrembleur C 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(25):7623-7637
The successful controlled homopolymerization of acrylonitrile (AN) by cobalt-mediated radical polymerization (CMRP) is reported for the first time. As a rule, initiation of the polymerization was carried out starting from a conventional azo-initiator (V-70) in the presence of bis(acetylacetonato)cobalt(II) ([Co(acac)(2)]) but also by using organocobalt(III) adducts. Molar concentration ratios of the reactants, the temperature, and the solvent were tuned, and the effect of these parameters on the course of the polymerization is discussed in detail. The best level of control was observed when the AN polymerization was initiated by an organocobalt(III) adduct at 0 degrees C in dimethyl sulfoxide. Under these conditions, poly(acrylonitrile) with a predictable molar mass and molar mass distribution as low as 1.1 was prepared. A combination of kinetic data, X-ray analyses, and DFT calculations were used to rationalize the results and to draw conclusions on the key role played by the solvent molecules in the process. These important mechanistic insights also permit an explanation of the unexpected "solvent effect" that allows the preparation of well-defined poly(vinyl acetate)-b-poly(acrylonitrile) by CMRP. 相似文献
9.
10.
A. D. Asandei V. Percec 《Journal of polymer science. Part A, Polymer chemistry》2001,39(19):3392-3418
The metal‐catalyzed radical polymerization of vinyl chloride (VC) in ortho‐dichlorobenzene initiated with various activated halides, such as α,α‐dihaloalkanes, α,α,α‐trihaloalkanes, perfloroalkyl halides, benzyl halides, pseudohalides, allyl halides, sulfonyl halides, α‐haloesters, α‐halonitriles, and imidyl halides, in the presence of Cu(0)/2,2′‐bipyridine, Fe(0)/o‐phenantroline, TiCp2Cl2, and other metal catalysts is reported. The formation of the monoadduct between the initiator and VC was achieved with all catalysts. However, propagation was observed only for metals in their zero oxidation state because they were able to reinitiate from geminal dihalo or allylic chloride structures. Poly(vinyl chloride) with molecular weights larger then the theoretical limit allowed by chain transfer to VC were obtained even at 130 °C. In addition, the most elemental features of a living radical polymerization, such as a linear dependence of the molecular weight and a decrease of polydispersity with conversion, were observed for the most promising systems based on iodine‐containing initiators and Cu(0), that is, I? CH2? Ph? CH2? I/Cu(0)/bpy (where bpy = 2,2′‐bipyridyl), at 130 °C. However, because of the formation of inactive species via chain transfer to VC and other side reactions, the observed conversions were in most cases lower than 40%. A mechanistic interpretation of the chain transfer to monomer in the presence of Cu species is proposed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3392–3418, 2001 相似文献
11.
Danilo Cuccato Marco Dossi Davide Moscatelli Giuseppe Storti 《Macromolecular Symposia》2011,302(1):100-109
Summary: Quantum chemistry was applied to the free radical polymerization of Vinyl Chloride with the aim of elucidating the reaction kinetics and especially the formation of structural defects and low molecular weight polymer. The radical reactions were studied using the Density Functional Theory. All calculations were performed with B3LYP functionals and in particular the 6-31G(d,p) basis set was selected to evaluate the exchange and correlation energies. The computational method was first validated by predicting the rate constant of the propagation step and comparing the calculated values to experimental ones. Then intramolecular chain transfer, β-scission and branching reactions were also investigated, due to their direct connection with the production of defects in the growing chains. A comparison of the evaluated kinetic constants of such secondary reactions with other computational evaluations and experimental data was finally made. 相似文献
12.
Wenwei Zhao Yukio Yamamoto Seiichi Tagawa 《Journal of polymer science. Part A, Polymer chemistry》1998,36(17):3089-3095
Radiation effects on the formation of conjugated double bonds in the thermal degradation of poly(vinyl chloride) (PVC) and poly(vinyl alcohol) (PVA) were investigated. Thin films of PVC and PVA were either irradiated with γ-rays at ambient temperature (pre-irradiation) and then subjected to thermal treatment, or irradiated at elevated temperatures (in situ irradiation). An extensive enhancement of the thermal degradation was observed for the pre-irradiation of the PVC films, which was more effective than the effect of the in situ irradiation at the same absorption dose. For the PVA degradation, however, the effect of the in situ irradiation was larger than that of the pre-irradiation. The results were explained and related mechanisms were discussed based on radiation-induced chemical reactions and their individual contributions to the thermal degradation behaviors of the two polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3089–3095, 1998 相似文献
13.
K. S. Santhosh Kumar Dr. Yves Gnanou Dr. Yohan Champouret Dr. Jean‐Claude Daran Dr. Rinaldo Poli Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(19):4874-4885
Poly(vinyl acetate) by OMRP : Increasing the steric encumbrance of the β‐diketonate R substituents in vinyl acetate (VAc) polymerization mediator [Co{OC(R)CHC(R)O}2] from Me to tBu sufficiently weakens the CoIII? PVAc bond of the polymer chain to allow it to operate by both associative (degenerative transfer) and dissociative (organometallic radical polymerization, OMRP) mechanisms (see scheme). The CoIII? PVAc species also acts as a transfer agent in the absence of Lewis bases, whereas the CoII complex shows catalytic chain transfer (CCT) activity.
14.
K. Ogura K. Kisaka H. Furukawa 《Journal of polymer science. Part A, Polymer chemistry》1995,33(8):1375-1380
Poly(vinyl chloride) (PVC) has been converted to an electrically conductive structure by combined electrochemical and photochemical methods. PVC was cast on a polypyrrole (PPy) film electrode which had been electrochemically prepared. The PVC layer in the laminated PVC/PPy films was first dehydrochlorinated under the illumination of UV light, and the generated polyenes were subsequently doped with I2 and FeCl3. The maximum electrical conductivity achieved for such PVC film was 2.51 X 10?2 and 8.63 10?2 S cm?1 after I2 and FeCl3 doping, respectively. The temperature dependence of the electrical conductivity showed different behavior in higher and lower temperature ranges. In the former (T > 243 K), the T?1 law held, and the activation energy and bandgap were estimated as 0.25 and 0.49 eV, respectively. In the latter (T < 243 K), the conductivity mechanism followed the variable range hopping model (T?1/4 law) in which the radius of the localized state wave function and the density of the localized states at the Fermi level were 1.25 × 103 Å and 1.03 X 1015 eV?1 cm?3, respectively. © 1995 John Wiley & Sons, Inc. 相似文献
15.
Studies of the phase‐equilibrium behavior of vinyl chloride (VCM)/n‐butane mixtures and the kinetics of VCM heterogeneous polymerization, using n‐butane as a reaction medium, were carried out using a 1‐L glass autoclave. The vapor composition was measured by gas chromatography, showing that the vapor pressure of the VCM/n‐butane mixture was located above the line connecting the points for pure VCM and n‐butane. The concentration of VCM in the vapor phase was greater than that in the corresponding liquid phase. It was confirmed that the presence of poly(vinyl chloride) (PVC) resin had no significant influences on the phase equilibrium of VCM/n‐butane mixtures. Thus, the phase‐equilibrium equations were applied to determine the conversion of VCM during heterogeneous polymerization. The conversions calculated from the variations of vapor pressure or composition agreed with those determined by the weighing method. The conversion–time and polymerization rate–time curves obtained for VCM heterogeneous polymerization showed that the polymerization accelerated at low initiator concentration, but the polymerization rate decreased with an increase of conversion at relatively high initiator concentrations. The chain‐transfer reaction to n‐butane was confirmed by a decrease of the molecular weight and broadening of the molecular weight distribution of PVC. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2179–2188, 2001 相似文献
16.
17.
Kotaro Ogura Jun Yano Kotaro Kisaka Hideo Goto 《Journal of polymer science. Part A, Polymer chemistry》1994,32(1):33-38
Polypyrrole (PPy) was deposited electrochemically on a platinum plate from a nitric acid solution of pyrrole. The PVC/PPy composite film was finally obtained by casting poly(vinyl chloride) (PVC) onto the PPy electrode from a tetrahydrofuran solution of PVC. The prepared composite film was irradiated at 90°C with a low-pressure mercury lamp in the stream of hydrogen gas saturated with steam, and the PVC film was dehydrochlorinated, leading to the formation of conjugated polyene. The electrical conductivity (σ) of the PVC film in the irradiated composite film was reveled: σ=2.51 × 10?5S cm?1. By iodine doping, σ was further enhanced up to 5.04 X 10?3 S cm?1. The tensile strength of the irradiated composite film became larger than that of the original PVC film; i.e., the stress at break was: 461 (composite film); 401 kg cm?2 (PVC). These results were brought about by the doping of radical species to the conjugated polyene. The anion, NO?3, doped during the electrodeposition of PPy was photodecomposed to generate radical NO2 and this species was doped to the polyene, resulting in the formation of electrically conductive PVC and mechanically improved composite film. © 1994 John Wiley & Sons, Inc. 相似文献
18.
David N. Bunck Gregory P. Sorenson Mahesh K. Mahanthappa 《Journal of polymer science. Part A, Polymer chemistry》2011,49(1):242-249
Cobalt‐mediated radical polymerizations (CMRPs) utilizing redox initiation are demonstrated to produce poly(vinyl ester) homopolymers derived from vinyl pivalate (VPv) and vinyl benzoate (VBz), and their block copolymers with vinyl acetate (VAc). Combining anhydrous Co(acac)2, lauroyl peroxide, citric acid trisodium salt, and VPv at 30 °C results in controlled polymerizations that yield homopolymers with Mn = 2.5–27 kg/mol with Mw/Mn = 1.20–1.30. Homopolymerizations of scrupulously purified VBz proceed with lower levels of control as evidenced by broader polydispersities over a range of molecular weights (Mn = 4–16 kg/mol; Mw/Mn = 1.34–1.65), which may be interpreted in terms of the decreased nucleophilicity of these less electron donating propagating polymer chain ends. Based on these results, we demonstrate that sequential CMRP reactions present a viable route to microphase separated poly(vinyl ester) block copolymers as shown by small‐angle X‐ray scattering analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
19.
Niyazi Bicak Bunyamin Karagoz Dilek Emre 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):1900-1907
Copper‐mediated atom transfer radical polymerization (ATRP) is presented as a versatile tool for the graft copolymerization of 2‐ethyl hexylacrylate with poly(vinyl chloride) (PVC) in an aqueous suspension. The appreciable solubility of PVC in 2‐ethyl hexylacrylate (30%) at temperatures around 130 °C makes grafting of the monomer possible from labile chlorines of PVC in aqueous suspensions without the use of additional solvent. The first‐order kinetics (rate constant k = 4.2 × 10?6 s?1) of the mass percentage increase reveals a typical ATRP fashion of the graft copolymerization at low conversions. The use of a completely organosoluble copper(I) complex of hexylated triethylene tetramine, in combination with α‐methylcellulose as a stabilizer, makes the graft copolymerization possible in a dispersed organic phase. Nearly spherical, green particles can be obtained with moderate stirring rates (1000 rpm) in high graft yields. Although the kinetics of the reaction deviates from the first order at high conversions, reasonable graft yields (146%) can be attained within a reaction period of 24 h. In this study, the reaction conditions of the grafting have been studied, and graft products have been confirmed by common techniques such as 1H NMR, gel permeation chromatography, and differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1900–1907, 2006 相似文献
20.
Maria S Kaneyoshi H Matyjaszewski K Poli R 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(9):2480-2492
The molecular structure of bis(acetylacetonate)cobalt(II) ([Co(acac)2]) in solution and in the presence of the electron donors (ED) pyridine (py), NEt3, and vinyl acetate (VOAc) was investigated using 1H NMR spectroscopy in C6D6. The extent of formation of ligand adducts, [Co(acac)2(ED)x], varies in the order py>NEt3>VOAc (no interaction). Density functional theory (DFT) calculations on a model system agree with Co--ED bond strengths decreasing in the same order. The effect of electron donors on the [Co(acac)2]-mediated radical polymerization of VOAc was examined at 30 degrees C by the addition of excess py or NEt3 to the complex in the molar ratio [VOAc]0/[Co]0/[V-70]0/[py or NEt3]0=500:1:1:30 (V-70=2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile)). As previously reported by R. Jerome et al., the polymerization showed long induction periods in the absence of ED. However, a controlled polymerization without an induction period took place in the presence of ED, though the level of control was poorer. The effective polymerization rate decreased in the order py>NEt3. A similar behavior was found when these electron donors were added to an ongoing [Co(acac)2]-mediated radical polymerization of VOAc. On the basis of the NMR and DFT studies, it is proposed that the polymerization is controlled by the reversible homolytic cleavage of an organocobalt(III) dormant species in the presence of ED. Conversely, the faster polymerization after the induction period in the absence of ED is due to a degenerative transfer process with the radicals produced by the continuous decomposition of the excess initiator. Complementary experiments provide additional results in agreement with this interpretation. 相似文献