首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of particles in a sample heavily influences the shape of a distribution corresponding to the individual particle measurements. Selecting an adequate number of particles that prevents biases due to sample size is particularly difficult for complex biological systems in which statistical distributions are not normal. Quantile analysis is a powerful statistical technique that can rapidly compare differences between multiple distributions of individual particles. This report utilizes quantile analysis to show that the number of events detected affects the mobility distributions for rat liver and mouse liver mitochondria, sample individual particles, when analyzed via capillary electrophoresis with laser-induced fluorescence. When the mitochondrial sample is small (e.g. <78), there are not enough events to obtain statistically relevant mobility data. Adsorption to the capillary surface also significantly affects the mobility distribution at a small number of events in uncoated and dynamically coated capillaries. These adsorption effects can be overcome when the mitochondrial load on the capillary is sufficiently large (i.e. >609 and >1426 events for mouse liver on uncoated capillaries and rat liver on dynamically coated capillaries, respectively). It is anticipated that quantile analysis can be used to study other distributions of individual particles, such as nanoparticles, organelles, and biomolecules, and that distributions of these particles will also be dependent on sample size.  相似文献   

2.
In order to accomplish the analysis of peptides and proteins by capillary electrophoresis, Lupamin, a high-molecular-weight linear polyvinylamine (PVAm) polymer, was introduced to modify the inner wall of fused-silica capillaries by physical absorption. Thanks to the high density of positively charged amino groups in Lupamin under acidic conditions, not only is a strong reversed electroosmotic flow generated in the coated capillary but the adsorption of analytes on the inner wall of the capillary is also efficiently eliminated. It has been demonstrated that the Lupamin-coated capillary can be used to advantage for the rapid analysis of amino acids, peptides, and proteins with good resolution and peak shape by capillary electrophoresis. In order to evaluate the basic feature of a Lupamin-coated capillary, electroosmotic flows generated by a Lupamin coating layer under different conditions including pH, coating time, concentration, and the composition of electrolytes on Lupamin-coated and uncoated capillaries were investigated. Furthermore, electrospray ionization-mass spectrometry (ESI-MS) detection was carried out for the analysis of amino acids and peptides.  相似文献   

3.
分别合成了以三羟甲基丙烷和季戊四醇为核的超支化聚(胺-酯),并对其进行了红外测定、羟值测定、粘度测定等表征。采用化学键合方法将其涂于毛细管内壁,并测定涂层柱的电渗流以及对碱性蛋白质的分离能力,结果表明,涂层柱能有效地抑制碱性蛋白质在毛细管内壁上的吸附,大大降低电渗流;以三羟甲基丙烷为核的超支化聚(胺-酯)涂层柱的塔板数达105/m,而以季戊四醇为核的超支化聚(胺-酯)涂层柱的分离柱效更高,塔板数达107/m。实验结果表明这两类涂层柱都具有较好的分离效果和稳定性。  相似文献   

4.
Wang Z  Wang J  Hu Z  Kang J 《Electrophoresis》2007,28(6):938-943
An approach for improving the separation performance of the enantioseparation by CE with vancomycin as chiral selector is described. In the present method, a solution of poly(dimethylacrylamide) (PDMA) was used for dynamic coating of the capillary wall to minimize the adsorption of vancomycin onto the capillary wall, and to depress the EOF. Compared with the bare fused-silica capillaries and the capillaries coated with the polycationic polymer hexadimethrine bromide (HDB), the PDMA-coated capillary displayed the best separation performance. The resulting coating could withstand hundreds of runs without losing its function. Moreover, a partial filling technique was applied to avoid interference in detection caused by the presence of vancomycin in the buffer. The separation time was shortened when a short-end-injection technique was applied. Several parameters such as buffer pH, vancomycin concentration and plug length of the vancomycin solution for the separation were optimized. Under the optimal conditions, all tested enantiomers, including FMOC amino acids derivatives, ketoprofen and fenoprofen, were baseline-separated in less than 4.2 min.  相似文献   

5.
The analysis of mitochondria by capillary electrophoresis usually takes longer than 20 min per replicate which may compromise the quality of the mitochondria due to degradation. In addition, low sample consumption may be beneficial in the analysis of rare or difficult samples. In this report, we demonstrate the ability to analyze individual mitochondrial events in picoliter-volume samples (approximately 80 pL) taken from a bovine liver preparation using microchip capillary electrophoresis with laser-induced fluorescence detection (micro-chip CE-LIF). Using a commercial "double-T" glass microchip, the sample was electrokinetically loaded in the "double-T" intersection and then subjected to electrophoretic separation along the main separation channel. In order to decrease interactions of mitochondria with channel walls during the analysis, poly(vinyl alcohol) was used as a dynamic coating. This procedure eliminates the need for complicated covalent surface modifications within the channels that were previously used in capillary electrophoresis methods. For analysis, mitochondria, isolated from bovine liver tissue, were selectively labelled using 10-nonyl acridine orange (NAO). The results consist of electropherograms where each mitochondrial event is a narrow spike (240 +/- 44 ms). While the spike intensity is representative of its NAO content, its migration time is used to calculate and describe its electrophoretic mobility, which is a property still largely unexplored for intracellular organelles. The five-fold decrease in separation time (4 min for microchip versus 20 min for capillary electrophoresis) makes microchip electrophoretic separations of organelles a faster, sensitive, low-sample volume alternative for the characterization of individual organelle properties and for investigations of subcellular heterogeneity.  相似文献   

6.
Successful separations of proteins by capillary electrophoresis in uncoated fused-silica capillaries is limited by adsorption and variable rates of electroendosmosis, which can compromise quantitative accuracy and precision. Operation at extremes of pH to minimize these problems is useful in special cases but is not a general strategy for protein separations. Three alternative strategies are described: use of capillaries coated with a linear hydrophilic polymer, the use of acidic solutions to wash the capillary between runs, and the incorporation of additives into the electrophoresis buffer to minimize adsorption during analysis. Applications of these techniques to protein samples is demonstrated.  相似文献   

7.
Shou CQ  Zhou CL  Zhao CB  Zhang ZL  Li GB  Chen LR 《Talanta》2004,63(4):887-891
A series of hyperbranched poly(amine-ester)s based on 1,1,1-trimethylolpropane, methyl acrylate and diethanolamine were synthesized and coated on the inner surface of the fused-silica capillaries by physical adsorption. The most effective coating was the seventh generation hyperbranched poly(amine-ester) coating, which reduced the electroosmotic flow (EOF) greatly and suppressed protein adsorption effectively. The high separation efficiencies for basic proteins were obtained and the coating had a good stability.  相似文献   

8.
In the present paper, fused-silica capillaries were chemically modified with an analogue of the imidazole-based ionic liquid and zwitterionic salt. The coated capillaries were examined for the behavior of the electroosmotic flow in both aqueous and non-aqueous electrolytes. The electroosmotic flow in the capillary coated with an ionic liquid analogue was found to be anodic (reversed) and dependent on the pH of the separation buffer. In the case of a zwitterionic capillary, the electroosmotic flow was cathodic and its velocity remained almost constant in the pH range of 4-7. The zeta-potentials of the modified surfaces were also calculated. The effectiveness of coating was investigated by comparing a separation of five inorganic ions and seven alkylphosphonic acids/monoesters in the modified and uncoated capillaries. All separations were successfully carried out in simple buffers and completed during a short analysis time. Finally, the run-to-run and day-to-day reproducibility of the coated capillaries in terms of the migration time of a neutral marker was determined.  相似文献   

9.
A novel and simple coating method was developed by coating bovine serum albumin (BSA) onto the inner surface of a fused-silica capillary, to avoid the adsorption of analytes during CE. The advantage presented here was that the coating process is more simple, fast, stable, and reproducible. The coated capillary avoided the adsorption of analytes onto the inner surface of a fused-silica capillary and might be a promising candidate for separation of complex biological samples with further development. Meanwhile, the efficiencies of the coated capillary were evaluated by EOF, chromatographic peak shape, and theoretical plate number (N m?1) of RNase A. The optimal coating conditions were obtained from the results. The pH value of coating buffer PB was 4.2, the standing time was 12 h at 4 °C, and the coating concentration of BSA was 1.5 mg mL?1. The stability of the coating on the inner wall of the capillary and the reproducibility of the coated capillaries were good. The theoretical plate number values of RNase A were over 1.3 × 105 (N m?1) in the coated capillary. After successive electrophoresis for 48 h using the coated capillary, the RSD values of EOF and the theoretical plate number were 4.14 % and 9.14 %, respectively. In addition, the RSD values of EOF and the theoretical plate number (N m?1) in the coated capillaries were 13.19 % and 8.96 %, respectively. Finally, the coated capillary was successfully applied to separate the mixture of four basic proteins (RNase A, lysozyme, trypsin and myoglobin).  相似文献   

10.
Cycloaliphatic epoxy resin coating for capillary electrophoresis   总被引:3,自引:0,他引:3  
Coating the interior surface of a fused-silica capillary with a polymeric material has long been used in capillary electrophoresis (CE) to reduce or eliminate electroosmotic flow and suppress adsorption. A cycloaliphatic epoxide-based resin was bonded to silane treated capillaries and crosslinked with a curing agent. The epoxy resin coating significantly reduced electroosmotic flow over a pH range of 3-10. This coating was sufficiently hydrophilic to suppress protein adsorption. The epoxy resin coated capillary was used to separate several acidic and basic proteins and peptides. Separation efficiencies greater than 400,000 theoretical plates were achieved. The relative standard deviations in migration times for proteins were <0.8%. Speed and simplicity are important advantages of the coating procedure compared to other published coating methods.  相似文献   

11.
The suitability of noncovalently bilayer-coated capillaries for the analysis of proteins by capillary electrophoresis (CE) at medium pH was investigated. Fused-silica capillaries were coated simply by successively flushing with a polybrene (PB) and a poly(vinyl sulfonate) (PVS) solution. A protein test mixture was used to evaluate the performance of the coated capillaries. Comparisons with bare fused-silica capillaries were made. Several background electrolytes (BGEs) were tested in combination with the PB-PVS coating, showing that optimum performance was obtained for the proteins using high BGE concentrations. With a 300 mM Tris phosphate buffer (pH 7.0), good plate numbers (150,000-300,000), symmetrical peaks, and favorable migration-time repeatabilities (RSDs below 0.8%) were obtained for the proteins. Using bare fused-silica capillaries, the protein peaks were significantly broadened and the migration-time RSDs often exceeded 5%. It is concluded that the PB-PVS coating effectively minimizes adverse protein adsorption and provides a very stable electroosmotic flow (EOF). We also investigated the potential of a commercially available bilayer coating (CEofix) for protein analysis. It is demonstrated that with this coating, good plate numbers and peak symmetries for proteins can be achieved when the CEofix BGE ("accelerator") is replaced by a common BGE such as sodium or Tris phosphate. Apparently, the negatively charged polymer present in the "accelerator" interacts with the proteins causing band broadening. The utility of the bilayer coatings is further illustrated by the separation of proteins such as interferon-alpha 2b, myoglobin and carbonic anhydrase, by the analysis of a degraded insulin sample in time, and by the profiling of the glycoprotein ovalbumin. In addition, it is demonstrated that even in the presence of concentrations of human serum albumin in the sample of up to 60 mg/mL, the PB-PVS coating still provides reproducible protein separations of good performance.  相似文献   

12.
Mora MF  García CD 《Electrophoresis》2007,28(8):1197-1203
This paper reports a simple procedure for coating fused-silica capillaries with poly(diallyldimethyl ammonium chloride) and montmorillonite. The coated capillaries were characterized by performing EOF measurements as a function of buffer pH, number of layers of coating, and number of runs (stability). The coated capillaries showed a highly stable mu(EOF) (run-to-run RSD less than 1.5%, n = 20), allowing continuous use for several days without conditioning. The coated capillaries were then used for the effective separation of nine environmentally important phenolic compounds showing a significant improvement in the resolution, when compared to bare fused-silica capillaries. The EOF of the coated capillaries was constant in alkaline solutions (pH > or = 7), allowing the optimization of the separation conditions of phenolic compounds without significantly affecting the mu(EOF).  相似文献   

13.
Summary Capillary zone electrophoresis has been developed for the separation of seed albumins fromVicia faba using both uncoated and polyoxyethylene ether (Brij-35) coated octadecylsilane derivatized capillaries. Optimal separation conditions were found by studying the effect of pH, buffer composition and applied voltage. The nonionic surfactant/C18 coated capillary significantly reduced albumin adsorption and electroosmotic flow (EOF). A gradual washing out of the surfactant from the coated capillary during use altered not only the magnitude of the EOF, but also its reproducibility. The introduction of hydrophilic polymer solutions between analyses for dynamic modification of the Brij/C18 coated capillary surface prevented desorption of coating material, allowed optimization of resolution and ensured stability of the EOF. CE with surface-modified capillaries was then used to compare seed albumin profiles of severalVicia species. This technique appears to provide a powerful tool for use in taxonomic investigations.  相似文献   

14.
Summary Capillary zone electrophoresis has been developed for the separation of seed albumins fromVicia faba using both uncoated and polyoxyethylene ether (Brij-35) coated octadecysilane derivatized capillaries. Optimal separation conditions were found by studying the effect of pH, buffer composition and applied voltage. The nonionic surfactant/C18 coated capillary significantly reduced albumin adsorption and electroosmotic flow (EOF). A gradual washing out of the surfactant from the coated capillary during use altered not only the magnitude of the EOF, but also its reproducibility. The introduction of hydrophilic polymer solutions between analyses for dynamic modification of the Brij/C18 coated capillary surface prevented desorption of coating material, allowed optimization of resolution and ensured stability of the EOF. CE with surface-modified capillaries was then used to compare seed albumin profiles of severalVicia species. This technique appears to provide a powerful tool for use in taxonomic investigations.  相似文献   

15.
A stable polyelectrolyte multilayer (PEM) coating was investigated for use in open-tubular capillary electrochromatography (o-CEC). In this approach, the PEM consisted of the cationic polymer of a quaternary ammonium salt, poly(diallyldimethylammonium chloride) and the anionic polymeric surfactant, poly(sodium undecylenic sulfate). Both the cationic and anionic polymers were physically adsorbed to the surface of a fused-silica capillary by use of a simple coating procedure. This procedure involved an alternate rinse of the positively and negatively charged polymers. The performance of the PEM coating as a dynamic stationary phase was evaluated by use of electrochromatographic experiments and showed good selectivity for both phenols and benzodiazepines. Reproducibility of the PEM coating was also evaluated by calculating the relative standard deviations (RSDs) of the electroosomotic flow (EOF). The run-to-run and capillary-to-capillary RSD values of the EOF were less than 1.5%. The endurance of the coating was more than 100 runs. The importance of the PEM coating was illustrated by comparing separations on a bare uncoated capillary with the coated capillary. In addition, the chromatographic performance using o-CEC and micellar electrokinetic chromatography (MEKC) was compared for the separation of benzodiazepines.  相似文献   

16.
In the present paper, two new methods, sol-gel and chemical bonding methods, were proposed for preparation of sulfonated fused-silica capillaries. In the sol-gel method, a fused-silica capillary was coated with the sol solution obtained by hydrolysis of 3-mercaptopropyltrimethoxysilane (MPTS) and tetramethoxysilane, and followed by age; while in the chemical bonding method, a capillary was chemically bonded directly with MPTS. Then, both the resulting capillaries were oxidized with an aqueous solution of hydrogen peroxide solution (H2O2) (30%, m/m) to obtain the sulfonated capillaries. The electroosmotic flow (EOF) for the sulfonated capillaries was found to remain almost constant within the studied pH range, and greater than that of the uncoated capillary. However, the coating efficiency of the capillary prepared by chemical bonding method was higher than that by sol-gel method, by comparing their magnitude of the EOF, the degree of disguise of the silanol and reproducibility of preparation procedure. The effects of the electrolyte's concentration and the content of methanol (MeOH) on the EOF were also studied. Especially, the study of the apparent pH (pH*) on the EOF in a water-MeOH system was reported. Finally, capillary electrophoretic separation of seven organic acids was achieved within 6.5 min under optimal condition using the chemically bonded sulfonated capillary. Moreover, separation of four alkaloids on the sulfonated capillary was compared with that on uncoated capillary in different conditions. Ion-exchange mechanism was found to play a key role for separation of these four basic analytes on the sulfonated capillary.  相似文献   

17.
Coated capillaries can be advantageous in many capillary electrophoretic applications where nonaqueous background electrolytes are used. In the present work, a new dynamic polymer coating (poly(glycidylmethacrylate-co-N-vinylpyrrolidone)) for methanol-based background electrolytes is introduced. The magnitude and stability of electroosmotic flow was investigated with coated capillaries at pH* values of 3, 7.8, and 10.4 in methanol. At pH* 7.8 and 10.4 the electroosmotic flow was negligible and repeatable. On the other hand, at pH* 3 a weak, unstable electroosmotic flow was observed, due to a change in the conformation of the polymer under acidic conditions. The dynamically coated capillaries were successfully applied to the separations of cationic drugs, phenols, and benzoic acids. The synthesis and characterization of the polymer are described in detail.  相似文献   

18.
The stability of capillaries coated with highly charged polyelectrolytes under various analytical conditions was studied, as well as their performance for the analysis of proteins by Capillary Electrophoreis (CE) over a wide range of pH (2.5-9.3). In this study, fused silica capillaries were modified either with a poly(diallyldimethylammonium) chloride (PDADMAC) monolayer or PDADMAC/poly(sodium 4-styrenesulfonate) (PSS) multilayer coatings, using optimal coating conditions previously determined. Results show that the coated capillaries are remarkably stable and efficient to limit protein adsorption under a variety of extreme electrophoretic conditions even in the absence of the coating agent in the background electrolyte which is exceptional for non-covalent coatings. Monolayer coated capillaries were demonstrated for the first time to be stable to acidic rinses and to organic solvents which proves that the stability of the capillaries is highly dependent on the coating procedure used. In addition, PDADMAC/PSS multilayer coatings were found to be stable to alkaline treatments. PDADMAC/PSS coated capillaries gave excellent performances for the analysis of proteins covering a large range of pI (4-11) and of molecular weight (14-65 kDa) over a wide pH range (i.e. 2.5-9.3). Even at high pH 9.3, protein analysis was possible with very good repeatabilities (RSD(tm)<1% and RSD(CPA)<2.6% (n ≥ 8)) and high peak efficiencies in the order of 700,000.  相似文献   

19.
The electrophoretic behaviour of the highly basic protein thaumatin was explored in strongly acid (pH 2) and mildly acid (pH 4.5) separation systems using both bare and coated fused silica capillaries. The separation selectivity for thaumatin I, thaumatin II, and for other sample constituents was insufficient for their baseline separation at pH 2 in an uncoated capillary because the separation efficiency was markedly lower than is common in the electrophoretic separations of proteins. A separation selectivity higher by up to one order of magnitude has been reached at pH 4.5. A pronounced asymmetry of zones, which impaired resolution at this pH, was effectively suppressed by coating of the capillary wall with a polymer. In fact, adsorption on the capillary coating always plays a contributory role whenever a good separation of thaumatin constituents is attained. This indicates that electrochromatographic separation systems based on capillaries coated with the layer of either cationic or hydrophilic uncharged polymer hold promise for the development of methods for thaumatin analysis.  相似文献   

20.
Rapid, precise, accurate, and reproducible methodology using capillary electrophoresis (CE) with dynamically coated capillaries for the analysis of heroin and its basic impurities and adulterants is presented. Highly selective determination of the above solutes is obtained by analyzing the same sample preparation by two CE methods. For the determination of heroin, its basic impurities and basic adulterants, dynamic coating of the capillary surface is accomplished using a commercially available reagent kit with an added cyclodextrin ((CD) polycation coating followed by polyanion coating with dimethyl-beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin). The addition of a cyclodextrin to the run buffer significantly improves the separation of these solutes. Neutral, acidic, and weakly basic adulterants which migrate near or after t0 do not interfere with the more mobile basic solutes. The determination of neutral, acidic, and weakly basic adulterants in heroin is accomplished using a modification of the above commercially available reagent kit. After first coating with a polycation, a negative coating is obtained using a surfactant sodium dodecyl sulfate. Micellar electrokinetic chromatography (MEKC) with dynamically coated capillaries gives an excellent separation of the neutral, acidic, and weakly basic solutes, with considerably shorter run times compared to conventional MEKC. In addition for this system, most basic solutes in heroin have longer migration times than the uncharged and acidic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号