首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
温度调控表面活性剂溶液有序结构转变研究新进展   总被引:2,自引:0,他引:2  
尹海清  黄建滨 《物理化学学报》2005,21(11):1324-1330
总结了近年来在温度调控表面活性剂有序结构转变研究方面的新进展. 主要介绍了囊泡的相转变, 温度诱导的胶束/囊泡转化, 离子表面活性剂胶束体系中的浊点现象, 温度控制的囊泡聚集以及温度诱导液晶相的形成与转化等五个方面的相关工作.  相似文献   

2.
Temperature-induced aqueous surfactant two-phase system (T-ASTP), which was found to be of generic importance, was investigated in a series of conventional mixed cationic-anionic surfactant systems. On the basis of the investigations of turbidity, dynamic light scattering, transmission electron microscopy, and fluorescence resonance energy transfer, the formation of T-ASTP can be attributed to temperature-induced vesicle aggregation. Aggregated vesicles existed in the upper part, while the separated vesicles existed in the lower part. The phase separation temperature can be regulated by varying the surfactant composition or adding additives, such as d-sorbitol, urea, or NaBr. The hydrophobic interaction and cooperative effect between cationic and anionic surfactants played a significant role in the formation of T-ASTP.  相似文献   

3.
Amylose gel is obtained by cooling amylose aqueous solution at a certain cooling rate. In order to clarify the gelation process of amylose in the mixed solvent of water and DMSO, the characteristics of turbidity and dynamic viscoelasticity of the solution as a function of temperature have been studied by optical and rheological methods, respectively. Accordingly, cloud temperature (Tc) at which the aggregation of amylose occurs, and gelation temperature (Tgel) at which the elasticity began to appear were obtained. Tc and Tgel were strongly dependent on cooling rate, and these values shifted to higher temperatures with decreasing cooling rate. However, there was difference between Tc and Tgel, and Tc was higher than Tgel, indicating the gelation process occurs in two stages.  相似文献   

4.
The formation of gold nanoparticles and the crystal growth at the surface of mixed phosphatidylcholine (PC)-ionic surfactant vesicles was investigated. The PC-bilayer surface was negatively charged by incorporating sodium dodecyl sulfate (SDS) and positively charged by adding hexadecyltrimethylammonium chloride (CTAB). The mass ratio phosphatidylcholine:surfactant was fixed in both cases at 1:1. The gold nanoparticle formation was studied by using transmission electron microscopy (TEM) combined with dynamic light scattering (DLS) and UV-vis absorption spectroscopy. TEM micrographs confirm that the particle formation occurs on the vesicle surface. However, the reduction process depends on the ionic surfactant incorporated into the vesicles, the vesicle size distribution, as well as the temperature used for the reduction process. Thereby, it becomes possible to control the crystal growth of the individual spherical gold nanoparticles in a characteristic way. Red colored colloidal dispersions consisting of monodisperse spherical nanoparticles with an average particle size between 2 and 8 nm (determined by dynamic light scattering) can be obtained by using a monodisperse SDS-modified vesicle phase. When the temperature is increased to 45 degrees C, a crystallization in rod-like or triangular structures is observed. In the CTAB-based template phase in general larger gold particles of about 35 nm are formed. In similarity to the anionic vesicles a temperature increase leads to the crystallization in triangular structures.  相似文献   

5.
The peculiar nature of temperature-induced vesicle aggregation (TIVA) in some catanionic surfactant systems is systematically investigated. On the basis of a general analysis of the intervesicular interactions, the main driving force for this phenomenon is considered to be the intervesicular hydrophobic interaction among the exposed hydrophobic part of the surfactant headgroups. The addition of an oppositely charged hydrophobic salt to the catanionic vesicle systems is also found to promote the occurrence of TIVA. In fact, TIVA can be induced in ordinary catanionic vesicle systems by the addition of an oppositely charged hydrophobic counterion.  相似文献   

6.
Heating-induced micelle to vesicle transition (MVT), which has been rarely reported in surfactant systems, was systemically studied in a number of mixed cationic-anionic surfactant systems. According to the turbidity measurements, the investigated systems can be divided into two classes: Class A and B. Heating-induced MVT was observed in Class A at certain total surfactant concentrations and mixed surfactant ratios, while no such transition was found in Class B. Further investigations revealed that the heating-induced MVT is more likely to take place in the cationic-anionic surfactant systems with relatively stronger molecule interaction and larger micelle aggregation number. The effects of several physicochemical factors, such as the variation of mixed surfactant ratios and the addition of n-decanol on the heating-induced MVT, were also studied.  相似文献   

7.
Vesicle-vesicle aggregation to mimic cell-cell aggregation has attracted much attention. Here, hyperbranched polymer vesicles (branched-polymersomes, BPs) with a cell-like size were selected as model membranes, and the vesicle aggregation process, triggered by click chemistry of the copper-catalysed azide-alkyne cycloaddition reaction, was systematically studied. For this purpose, azide and alkynyl groups were loaded on the membranes of BPs through the co-assembly method to obtain N(3)-BPs and Alk-BPs, respectively. Subsequently, macroscopic vesicle aggregates were obtained when these two kinds of functional BPs were mixed together with the ratio of azide to alkynyl groups of about 1:1. Both the vesicle fusion events and lateral phase separation on the vesicle membrane occurred during such a vesicle aggregation process, and the fusion rate and phase-separation degree could be controlled by adjusting the clickable group content. The vesicle aggregation process with N(3) -micelles as desmosome mimics to connect with Alk-BPs through click-chemistry reaction was also studied, and large-scale vesicle aggregates without vesicle fusion were obtained in this process. The present work has extended the controllable cytomimetic vesicle aggregation process with the use of covalent bonds, instead of noncovalent bonds, as the driving force.  相似文献   

8.
Recently, we found oligodeoxynucleotide could induce single‐chained cationic surfactant to organize into vesicles. In this article, we will report the effects of NaCl and temperature on the surfactant/oligodeoxynucleotide vesicle formation. A moderate content of NaCl can facilitate vesicle formation and high content of NaCl makes vesicle degraded. The enhanced hydrophobic interaction between surfactant and oligodeoxynucleotide with NaCl plays a key role for facilitating vesicle formation. Moreover, surfactant/oligodeoxynucleotide vesicles tend to aggregate at high temperature and the change is irreversible. However, the presence of NaCl makes this change reversible. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Recently,we reported that deoxyribo-oligonucleotides could induce single chained cationic surfactant aggregation to form vesicles.In this paper,we will present that ribo-oligonucleotides can also induce vesicle formation,and compared with deoxyribo-oligonucleotides,ribo-oligonucleotides exhibit a higher inductive efficiency.  相似文献   

10.
表面活性剂在溶液中聚集形态的动力学模拟   总被引:13,自引:1,他引:13  
用耗散颗粒动力学模拟方法(DPD)展示了表面活性剂分子在溶液中的聚集形态,用扩散程度表征了表面活性剂溶液中的自组装情况。结果发现:这种分子动力学模拟方法能够直观地得到表面活性剂的聚集形态;随着表面活性剂的浓度增加,聚集形态依次从球状胶束、棒状或虫状胶束,六角状相,向层状相变化。  相似文献   

11.
Large unilamellar vesicles composed of a nonionic synthetic glycotipid, 1,3 - di- 0 - phylanyl -2-0-(β- maltotriosyl ) glycerol show pH-dependent aggregation - dissocialion process, that is, vesicle aggregation occurs in the lower pH region and vesicle dissociation occurs in the higher pH region. This process is almost reversible and the aggregation threshold pH is dependent on NaCl concentration. Fluorescence technique has been applied to study whether the vesicle fusion occurs or not during the aggregation-dissociation process. It is concluded pH can only induce the aggregation of this nonionic glycoltpid vesicle.  相似文献   

12.
Vesicle aggregation induced by different environmental factors, including the addition of divalent metal ions, decrease of pH, and increase of temperature--was investigated through turbidity measurement, fluorescence measurement, and transmission electron microscope observation in aqueous solutions of hydrolyzed styrene-maleic anhydride copolymer (HSMA) mixed with dodecyltriethylammonium bromide (C(12)Et(3)). The vesicle aggregation can be explained by the dehydration of the vesicle surface through cations addition or temperature increase based on an analysis of the interaction between vesicles. Moreover, the steric repulsion was introduced to the system and the control of vesicle aggregation was achieved.  相似文献   

13.
The aggregation behavior of the cationic-rich side of a sugar-based tricatenar catanionic mixture was investigated in water, and it was shown that the excess of cationic sugar-based surfactant enhanced vesicle stability as well as encapsulation properties. Moreover, when the system was diluted, the vesicular solution collapsed into a lamellar phase, whereas, when it was concentrated, no major impact on the shape and stability of the aggregates was observed. We also showed that both an increase in temperature and the addition of salt induced reversible vesicle aggregation, which appeared to be salt-specific, following the direct order of the Hofmeister series. A proper adjustment of these parameters should then enable better control of the shape, stability, and even encapsulation ability of the aggregates formed by these tricatenar cationic/anionic mixtures.  相似文献   

14.
We investigated DNA-directed aggregation of vesicles using DNA-surfactants. Following tethering of single-stranded DNA oligonucleotides to vesicles using DNA-surfactant, the tethered vesicles were assembled with other vesicles bearing complementary strands. The vesicle aggregation was strongly affected by the salt concentration and by temperature according to the characteristics of DNA hybridization. Restriction enzyme, which can hydrolyze the double-stranded DNA used in the present study, dissociated the vesicle aggregates. Exploration using fluorescently labeled vesicles suggested that the DNA-directed vesicle aggregation took place in a sequence-specific manner through DNA-duplex formation. Interestingly, the DNA-directed aggregation using short DNA-surfactant induced the fusion of vesicles to produce giant vesicles, resulting in an enzymatic reaction in the giant vesicle.  相似文献   

15.
Vesicles can be formed spontaneously in aqueous solution of a single anionic surfactant sodium dodecyl benzenesulfonate (SDBS) just under the inducement of salt, which makes the formation of vesicle much easier and simpler. The existence of vesicles was demonstrated by TEM image using the negative-staining method. The mechanism of the formation may be attributed to the compression of salt on the electric bilayer of the surfactant headgroups, which alters the packing parameter of the surfactant. The addition of the zwitterionic surfactant lauryl sulfonate betaine (LSB) makes the vesicles more stable, expands the range of formation and vesicle size, and reduces the polydispersity of the vesicles. The vesicle region was presented in a pseudoternary diagram of SDBS/LSB/brine. The variations of vesicle size with the salinity and mixing ratios, as well as the surfactant concentration, were determined using the dynamic light scattering method. It is found that the vesicle size is independent of the surfactant concentration but subject to the salinity and the mixing ratio of the two surfactants.  相似文献   

16.
Two types of Gemini surfactants containing a disulfide bond in the spacer, sodium dilauroyl cystine (SDLC) and sodium didecamino cystine (SDDC), were synthesized, and their surface properties and aggregation behavior in aqueous solution were studied by means of surface tension measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescence. During the transition of the Gemini surfactants to their corresponding monomers through the reduction of disulfide bonds, the surface tensions of their aqueous solutions, as well as their aggregation behavior, changed greatly. The reduction of SDLC and SDDC led to disruption of the vesicle, and the oxidation of corresponding monomers to Gemini surfactants led to vesicle re-formation. These results demonstrated the control of surface properties and aggregation behavior by the reversible transition between the Gemini surfactant and its monomer via reduction/oxidation reactions.  相似文献   

17.
Simulations based on dissipative particle dynamics are performed to investigate the solubilization mechanism of vesicles by surfactants. Surfactants tend to partition themselves between vesicle and the bulk solution. It is found that only surfactants with suitable hydrophobicity are able to solubilize vesicles by forming small mixed micelles. Surfactants with inadequate hydrophobicity tend to stay in the bulk solution and only a few of them enter into the vesicle. Consequently, the vesicle structure remains intact for all surfactant concentrations studied. On the contrary, surfactants with excessive hydrophobicity are inclined to incorporate with the vesicle and thus the vesicle size continues to grow as the surfactant concentration increases. Instead of forming discrete mixed micelles, lipid and surfactant are associated into large aggregates taking the shapes of cylinders, donuts, bilayers, etc. For addition of surfactant with moderate hydrophobicity, perforated vesicles are observed before the formation of mixed micelles and thus the solubilization mechanism is more intricate than the well-known three-stage hypothesis. As the apparent critical micellar concentration (φ(s,v)(a,CMC)) is attained, pure surfactant micelles form and the vesicle deforms because the distribution of surfactant within the bilayer is no longer uniform. When the surfactant concentration reaches φ(s,v)(p), the vesicle perforates. The extent of perforation grows with increasing surfactant concentration. The solubilization process begins at φ(s,v) (sol), and lipids leave the vesicle and join surfactant micelles to form mixed micelles. Eventually, total collapse of the vesicle is observed. In general, one has φ(s,v)(a,CMC)≤φ(s,v)(p)≤φ(s,v)(sol).  相似文献   

18.
The aggregation behaviors of the cationic and anionic (catanionic) surfactant vesicles formed by didodecyldimethylammonium bromide (DDAB)/sodium bis(2-ethylhexyl) phosphate (NaDEHP) in the absence and presence of a negatively charged polyelectrolyte are investigated. The amount of the charge on the vesicle can be tuned by controlling the DDAB/NaDEHP surfactant molar ratio. The charged vesicular dispersions made of DDAB/NaDEHP are mixed with a negatively charged polyelectrolyte, poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSAMA), to form complexes. Depending on the polyelectrolyte/vesicle charge ratio, complex flocculation or precipitation occurs. Characterization of the catanionic vesicles and the complexes are performed by transmission electron microscope (TEM), Cryo-TEM, dynamic light scattering (DLS), conductivity, turbidity, zeta potential, isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS) measurements.  相似文献   

19.
利用浊度和电镜观察等方法研究了水解的苯乙烯-马来酸酐共聚物(SMA)和十二烷基三乙基溴化铵(DEAB)混合体系中多价金属离子诱导的囊泡聚集现象. 提出了关于多价金属离子诱导囊泡聚集的机理.  相似文献   

20.
Membrane fusion and aggregation of phospholipid vesicles are reviewed and discussed. The fusion process is viewed as consisting of several stages: aggregation and close apposition of the particles, destabilization, and finally, merging of the bilayers. A procedure is presented which yields both the rate constant of the dimerization (C11) and the rate constant for fusion of the dimers (f11), which is a direct measure of the probability that two apposed vesicles will fuse. Experimental methods used in the study of membrane fusion are reviewed, primarily with respect to their capacity to monitor the kinetics of vesicle fusion. A few kinetic studies on the mixing of aqueous contents, leakage and increase in size of fusing vesicles are presented in detail.The range of C11 values for Ca2+-induced aggregation and fusion of small unilamellar vesicles (SUV, ~ 125 Å radius) composed of phosphatidylserine (PS) is 106 to 5 × 107 M-1 in the presence of Ca2+ concentrations from 1.15 to 2 mM, respectively. For larger PS vesicles (LUV, ~ 500 Å radius) C11 = 6.5 × 107 M-1s-1 in the presence of 5 mM Ca2+. These values are in good agreement with theoretical calculations based on van der Waals and electrostatic interactions, in which binding of cations is explicitly taken into account. The rate constants of fusion, f11, are 5 s-1 for PS SUV and 0.08 s-1 for LUV in the presence of 2 mM and 5 mM Ca2+, respectively. The significance of these fusion rate constants to the duration of the fusion event is discussed.Factors affecting fusion such as cations, temperature, membrane composition vesicle concentration and size are reviewed and analyzed. Di- or tri-valent cations induce fusion of acidic phospholipid vesicles (except for phosphatidylinositol) in either pure or mixed form. Among the neutral phospholipids, phosphatidylcholine (PC) inhibits but phosphatidylethanolamine (PE) sustains or enhances the fusion capacity of acidic phospholipid vesicles. Monovalent cations induce reversible aggregation of negatively charged vesicles, but they inhibit the fusion induced by divalent cations such as Ca2+ or Mg2+. Fusion of neutral phospholipid vesicles, and it occurs the cation-induced fusion of acidic phospholipid vesicles, and it occurs only at temperatures below the gel to liquid crystalline phase transition temperature Tc. This is in contrast to the acidic phospholipid vesicle fusion which is greatly enhanced when the temperature is above the Tc of the phospholipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号