首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises in the solution of the Neumann boundary value problem for the Laplace equation with a representation of a solution in the form of a double-layer potential. We consider the case in which the interior or exterior boundary value problem is solved in a domain; whose boundary is a smooth closed surface, and an integral equation is written out on that surface. For the integral operator in that equation, we suggest quadrature formulas like the method of vortical frames with a regularization, which provides its approximation on the entire surface for the use of a nonstructured partition. We construct a numerical scheme for the integral equation on the basis of suggested quadrature formulas, prove an estimate for the norm of the inverse matrix of the related system of linear equations and the uniform convergence of numerical solutions to the exact solution of the hypersingular integral equation on the grid.  相似文献   

2.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises when solving the Neumann boundary value problem for the Laplace equation with the use of the representation of the solution in the form of a double layer potential. We study the case in which an exterior or interior boundary value problem is solved in a domain whose boundary is a smooth closed surface and the integral equation is written out on that surface. For the numerical solution of the integral equation, the surface is approximated by spatial polygons whose vertices lie on the surface. We construct a numerical scheme for solving the integral equation on the basis of such an approximation to the surface with the use of quadrature formulas of the type of the method of discrete singularities with regularization. We prove that the numerical solutions converge to the exact solution of the hypersingular integral equation uniformly on the grid.  相似文献   

3.
We study the numerical solution of a linear hypersingular integral equation arising when solving the Neumann boundary value problem for the Laplace equation by the boundary integral equation method with the solution represented in the form of a double layer potential. The integral in this equation is understood in the sense of Hadamard finite value. We construct quadrature formulas for the integral occurring in this equation based on a triangulation of the surface and an application of the linear approximation to the unknown function on each of the triangles approximating the surface. We prove the uniform convergence of the quadrature formulas at the interpolation nodes as the triangulation size tends to zero. A numerical solution scheme for this integral equation based on the suggested quadrature formulas and the collocation method is constructed. Under additional assumptions about the shape of the surface, we prove a uniform estimate for the error in the numerical solution at the interpolation nodes.  相似文献   

4.
We consider a linear integral equation with a supersingular integral treated in the sense of the Hadamard finite value, which arises in the solution of the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a doublelayer potential. We consider the case in which the exterior boundary value problem is solved outside a plane surface (a screen). For the integral operator in the above-mentioned equation, we suggest quadrature formulas of the vortex loop method with regularization, which provide its approximation on the entire surface when using an unstructured partition. In the problem in question, the derivative of the unknown density of the double-layer potential, as well as the errors of quadrature formulas, has singularities in a neighborhood of the screen edge. We construct a numerical scheme for the integral equation on the basis of the suggested quadrature formulas and prove an estimate for the norm of the inverse matrix of the resulting system of linear equations and the uniform convergence of the numerical solutions to the exact solution of the supersingular integral equation on the grid.  相似文献   

5.
A numerical scheme has been constructed for solving a linear hypersingular integral equation on a segment with the integral treated in the sense of the Hadamard principle value by the method of piecewise linear approximations on an arbitrary nonuniform grid, with the hypersingular integral being regularized by approximating the unknown function with a constant in a small neighborhood of the singular point. The radius of the neighborhood can be chosen independently of the grid pitch, the latter understood as the maximum distance between the nodes. The uniform convergence of the obtained numerical solutions to the exact solution is proved as the grid pitch and the radius of the neighborhood in which the regularization is performed simultaneously tend to zero.  相似文献   

6.
We consider a class of boundary value problems for linear multi-term fractional differential equations which involve Caputo-type fractional derivatives. Using an integral equation reformulation of the boundary value problem, some regularity properties of the exact solution are derived. Based on these properties, the numerical solution of boundary value problems by piecewise polynomial collocation methods is discussed. In particular, we study the attainable order of convergence of proposed algorithms and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by two numerical examples.  相似文献   

7.
We study the solvability of a complete two-dimensional linear integral equation with a hypersingular integral understood in the sense of the Hadamard principal value. We justify the convergence of a quadrature-type numerical method for the case in which the equation in question is uniquely solvable. We present an application of the results to the numerical solution of the Neumann boundary value problem on a plane screen for the Helmholtz equation by the surface potential method.  相似文献   

8.
The surface integral equation for a spatial mixed boundary value problem for the Helmholtz equation is considered. At a set of chosen points, the equation is replaced with a system of algebraic equations, and the existence and uniqueness of the solution of this system is established. The convergence of the solutions of this system to the exact solution of the integral equation is proven, and the convergence rate of the method is determined.  相似文献   

9.
A combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped is proposed. At the grid points that are at the distance equal to the grid size from the boundary, the 6-point averaging operator is used. At the other grid points, the 26-point averaging operator is used. It is assumed that the boundary values have the third derivatives satisfying the Lipschitz condition on the faces; on the edges, they are continuous and their second derivatives satisfy the compatibility condition implied by the Laplace equation. The uniform convergence of the grid solution with the fourth order with respect to the grid size is proved  相似文献   

10.
We consider a three-dimensional boundary value problem for the Laplace equation on a thin plane screen with boundary conditions for the “directional derivative”: boundary conditions for the derivative of the unknown function in the directions of vector fields defined on the screen surface are posed on each side of the screen. We study the case in which the direction of these vector fields is close to the direction of the normal to the screen surface. This problem can be reduced to a system of two boundary integral equations with singular and hypersingular integrals treated in the sense of the Hadamard finite value. The resulting integral equations are characterized by the presence of integral-free terms that contain the surface gradient of one of the unknown functions. We prove the unique solvability of this system of integral equations and the existence of a solution of the considered boundary value problem and its uniqueness under certain assumptions.  相似文献   

11.
We determine the boundary of a two-dimensional region using the solution of the external initial boundary-value problem for the nonhomogeneous heat equation. The initial values for the boundary determination include the right-hand side of the equation and the solution of the initial boundary-value problem given for finitely many points outside the region. The inverse problem is reduced to solving a system of two integral equations nonlinear in the function defining the sought boundary. An iterative procedure is proposed for numerical solution of the problem involving linearization of integral equations. The efficiency of the proposed procedure is investigated by a computer experiment.  相似文献   

12.
We consider a nonlinear parabolic boundary value problem of the Stefan type with one space variable, which generalizes the model of hydride formation under constant conditions. We suggest a grid method for constructing approximations to the unknown boundary and to the concentration distribution. We prove the uniform convergence of the interpolation approximations to a classical solution of the boundary value problem. (The boundary is smooth, and the concentration distribution has the necessary derivatives.) Thus, we prove the theorem on the existence of a solution, and the proof is given in constructive form: the suggested convergent grid method can be used for numerical experiments.  相似文献   

13.
We develop and experimentally study the algorithms for solving three-dimensionalmixed boundary value problems for the Laplace equation in unbounded domains. These algorithms are based on the combined use of the finite elementmethod and an integral representation of the solution in a homogeneous space. The proposed approach consists in the use of the Schwarz alternating method with consecutive solution of the interior and exterior boundary value problems in the intersecting subdomains on whose adjoining boundaries the iterated interface conditions are imposed. The convergence of the iterative method is proved. The convergence rate of the iterative process is studied analytically in the case when the subdomains are spherical layers with the known exact representations of all consecutive approximations. In this model case, the influence of the algorithm parameters on the method efficiency is analyzed. The approach under study is implemented for solving a problem with a sophisticated configuration of boundaries while using a high precision finite elementmethod to solve the interior boundary value problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated with some numerical experiments.  相似文献   

14.
We consider a first-order linear differential equation subject to boundary value conditions which take into account the values of the function at multiple points in the interval of interest. For this problem, we calculate the Green?s function which allows to express in integral form the exact expression of the unique solution to the multipoint boundary value problem under the appropriate conditions. From this study, some results are derived concerning the existence of solutions with a constant sign (that is, some comparison results for first-order multipoint boundary value problems).  相似文献   

15.
本文考虑具有初始跳跃的二阶双曲型方程初边值问题.首先给出解的导数估计.然后在一非均匀网格上构造了一个差分格式,最后在能量范数意义下证明了差分格式解的一致收敛性.  相似文献   

16.
We consider numerical methods for solving inverse problems that arise in heart electrophysiology. The first inverse problem is the Cauchy problem for the Laplace equation. Its solution algorithm is based on the Tikhonov regularization method and the method of boundary integral equations. The second inverse problem is the problem of finding the discontinuity surface of the coefficient of conductivity of a medium on the basis of the potential and its normal derivative given on the exterior surface. For its numerical solution, we suggest a method based on the method of boundary integral equations and the assumption on a special representation of the unknown surface.  相似文献   

17.
We study the solvability of a complete two-dimensional linear hypersingular integral equation that contains a hypersingular integral operator in which the integral is understood in the sense of Hadamard finite value as well as an integral operator in which the integral is understood in the sense of principal value, an integral operator with a weakly singular kernel, and an integral-free term. We consider smooth solutions in the class of functions that have Hölder continuous derivatives outside a neighborhood of the boundary. We prove the Fredholm alternative and estimate the norm of the solution in a special metric.  相似文献   

18.
Nowadays boundary elemen; methods belong to the most popular numerical methods for solving elliptic boundary value problems. They consist in the reduction of the problem to equivalent integral equations (or certain generalizations) on the boundary Γ of the given domain and the approximate solution of these boundary equations. For the numerical treatment the boundary surface is decomposed into a finite number of segments and the unknown functions are approximated by corresponding finite elements and usually determined by collocation and Galerkin procedures. One finds the least difficulties in the theoretical foundation of the convergence of Galerkin methods for certain classes of equations, whereas the convergence of collocation methods, which are mostly used in numerical computations, has yet been proved only for special equations and methods. In the present paper we analyse spline collocation methods on uniform meshes with variable collocation points for one-dimensional pseudodifferential equations on a closed curve with convolutional principal parts, which encompass many classes of boundary integral equations in the plane. We give necessary and sufficient conditions for convergence and prove asymptotic error estimates. In particular we generalize some results on nodal and midpoint collocation obtained in [2], [7] and [8]. The paper is organized as follows. In Section 1 we formulate the problems and the results, Section 2 deals with spline interpolation in periodic Sobolev spaces, and in Section 3 we prove the convergence theorems for the considered collocation methods.  相似文献   

19.
A 3D problem of reflection of a plane electromagnetic wave by a local impedance section of a wavy surface is considered. The boundary value problem for the system of Maxwell’s equations in a region with an irregular boundary is reduced to solution of systems of hypersingular integral equations. A numerical algorithm is proposed for solution of these systems. Results of numerical computations are presented.  相似文献   

20.
We consider an initial value problem for the second-order differential equation with a Dirichlet-to-Neumann operator coefficient. For the numerical solution we carry out semi-discretization by the Laguerre transformation with respect to the time variable. Then an infinite system of the stationary operator equations is obtained. By potential theory, the operator equations are reduced to boundary integral equations of the second kind with logarithmic or hypersingular kernels. The full discretization is realized by Nyström's method which is based on the trigonometric quadrature rules. Numerical tests confirm the ability of the method to solve these types of nonstationary problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号