首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The adsorption and kinetic processes of the formation of gas bubbles passivating the surface during polarization of copper and graphite electrodes in 1% aqueous solution of sulfuric acid have been investigated. Three stages of the process related to the recharging of the double electric layer—adsorption accumulation of the gas escaping from the surface, the critical nucleation of the gas bubbles, and their subsequent growth—have been revealed, distinguished, and quantitatively estimated. It has been shown that potential leveling at the steady-state value specified by the Tafel equation is unambiguously associated with achievement of the limiting surface area screened by the gas bubbles for each particular current density. The surface diffusion constants D H = (1.5–4.4) × 10−4 and (0.1–3.8) × 10−5 cm2/s of hydrogen on copper and graphite, respectively, and D O = (1.8–4.5) × 10−7 cm2/s of oxygen on graphite during the motion toward the drain (the gas bubbles) have been calculated.  相似文献   

2.
3.
ABSTRACT

Tungsten (W) has been regarded as one of the most promising plasma facing materials (PFMs) in fusion reactors. The formation of bubbles and blisters during hydrogen (H) irradiation will affect the properties of W. The dependence of implantation conditions, such as fluence and energy, is therefore of great interest. In this work, polycrystalline tungsten samples were separated into two groups for study. The thick samples were implanted by 18?keV H3+ ions to fluences of 1?×?1018, 1?×?1019 and 1?×?1020 H+/cm2, respectively. Another thick sample was also implanted by 80?keV H2+ ions to a fluence of 2?×?1017 H+/cm2 for comparison. Moreover, the thin samples were implanted by 18?keV H3+ ions to fluences of 9.38?×?1016, 1.88?×?1017 and 5.63?×?1017 H+/cm2, respectively. Focused ion beam (FIB) combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for micro-structure analysis, while time-of-flight ion mass spectrometry (ToF-SIMS) was used to characterize the H depth profile. It is indicated that bubbles and blisters could form successively with increasing H+ fluence. H bubbles are formed at a fluence of ~5.63?×?1017 H+/cm2, and H blisters are formed at ~1?×?1019 H+/cm2 for 18?keV H3+ implantation. On the other hand, 80?keV H2+ ions can create more trapping sites in a shallow projected range, and thus enhancing the blisters formation with a relatively lower fluence of 2?×?1017?H+/cm2. The crack-like microstructures beneath the blisters are also observed and prefer to form on the deep side of the implanted range.  相似文献   

4.
It is shown that the kinetics of the charge and current passing through a thin-film electroluminescent emitter, as well as the I-V characteristics of the emitter, greatly diverge under blue, red, and IR pulsed illumination with photon energies of ≈2.6, ≈1.9, and ≈1.3 eV, respectively, and a photon flux density of 4×1014–3×1015 mm−2 s−1. Results obtained indicate that, during the operation of the emitter, deep centers associated presumably with V Zn 2− zinc vacancies and V S + and V S 2+ sulfur vacancies exchange charge. These centers lie above the valence band by ≈1.1, ≤1.9, and ≤1.3 eV, respectively. Their concentrations are estimated as (3–4)×1016 cm−3 for V Zn 2− and V S + and ≈1.5×1016 cm−3 for V S 2+ . It is demonstrated that positive and negative space charges forming in the near-anode and near-cathode regions of the phosphor layer specify the electric performance of the emitters.  相似文献   

5.
A study is made of the effects related to the formation of electrode jets in discharges in hydrogen and air at a current of 105–106 A, a current growth rate of 1010 A/s, an initial pressure of 0.1–4.0 MPa, and a discharge gap length of 5–40 mm. After secondary breakdown, jets are observed in a semitransparent discharge channel expanding with a velocity of (4–7)×102 m/s. The formation of shock waves in the interaction of the jets with the ambient gas and the opposite electrode is observed by the shadowgraphy method. Seventy microseconds after the beginning of the discharge, the pressure of the metal vapor plasma near the end of the tungsten cathode amounts to 177 MPa. The brightness temperature in this case is T=59×103 K, the average ion charge number is [`(m)] = 3.1\overline m = 3.1 , and the metal vapor density is n=5.3×1019 cm−3. After 90 μs, the average ion charge number and the metal vapor density near the anode end are [`(m)] = 2.6\overline m = 2.6 and n=7.4×1019 cm−3, respectively. Based on the experimental data, possible reasons for the abnormally high values of the total voltage drop near the electrodes (up to ∼1 kV) are discussed.  相似文献   

6.
The segregated graphene oxide(GO)/ultra-high-molecular-weight polyethylene (UHMWPE) composite films with various interfacial adhesion property were prepared by mechanical blending method from UHMWPE, GO, dodecyl amine (DA) functionalized graphene oxide(DA–GO) or uniform DA–GO/high density polyethylene (DA–GO/HDPE) powder. The results of XRD and XPS indicated that DA chain was successfully grafted onto GO sheets via a chemical method, which enhanced the interfacial adhesion between UHMWPE particles and GO sheets. The characterizations of POM and SEM proved that good segregated structure was only obtained in DA–GO/UHMWPE or DA–GO/HDPE/UHMWPE composite. Strong interfacial adhesion between fillers and matrix exhibits positive effect on gas barrier property. Compared to the GO/UHMWPE composite film, dramatic decrease in O2 permeability coefficient by 42.2 and 48.1%, from 15.4 × 10?14 to 8.9 × 10?14 and 8.0 × 10?14 cm3 cm cm?2 s?1 Pa?1, is achieved upon the addition of only 0.5 wt% fillers, respectively. The DSC results demonstrated that the enhanced gas barrier performance was ascribed to the strong interfacial adhesion between DA–GO/HDPE and UHWMPE matrix, rather than the crystallinity of UHWMPE matrix. Additionally, the decrease in UHMWPE particle size might be conducive to improving the gas barrier property of composite films due to the formation of more isolation layers perpendicular to the film plane.  相似文献   

7.
Radiation damage to borosilicate glass has been studied using a high voltage electron microscope to simultaneously generate and image structural changes At low doses and dose rates (φ ? 5 × 1024 electrons m-2, F ? 5 × 1022 el m-2 s-1), ionic depletion generates a new crystalline phase rich in S1O2 For incubation doses exceeding 5 × 1024 electrons m-2, gas bubbles are observed High damage rates are necessary for bubble nucleation though not for their subsequent growth The critical nucleation flux increases rapidly with irradiation temperature, whereas the gas precipitation efficiency remains constant above 300 K.  相似文献   

8.
OH radical number density in multiple atmospheric pressure microwave plasma jets is measured using UV cavity ringdown spectroscopy of the OH (A–X) (0–0) band at 308 nm. The plasma cavity was excited by a 2.45 GHz microwave plasma source and plasma jets of 2–12 mm long were generated by using three different plasma gases, argon (Ar), Ar/N2, and Ar/O2. Comparative characterization of the plasma jets in terms of plasma shape, stability, gas temperature, emission intensities of OH, NO, and N2, and absolute number density of the OH radical was carried out under different plasma gas flow rates and powers at various locations along the plasma jet axis. With three different operating gases, the presence of OH radicals in all of the plasma jets extended to the far downstream. As compared to the argon plasma jets, the plasma jets formed with Ar/N2 and Ar/O2 are more diffuse and less stable. Plasma gas temperatures along the jet axis were measured to be in the range of 470–800 K for all of the jets formed in the different gas mixtures. In each plasma jet, OH number density decreases along the jet axis from the highest OH density in the vicinity of the jet tip to the lowest in the far downstream. OH density ranges from 1.3 × 1012 to 1.1 × 1016, 4.1 × 1013 to 3.9 × 1015, and 7.0 × 1012 to 4.6 × 1016 molecule/cm3 in the Ar, Ar/N2, and Ar/O2 plasma jets, respectively. The OH density dependence on plasma power and gas flow rate in the three plasma jets is also investigated.  相似文献   

9.
Topographical and expansion effects which occur as a result of implanting erbium thin films with helium up to fluences of 1.5 × 1018 He+/cm2 are described. There exists an inverse relationship between critical dose and annealing temperature with respect to the formation of surface bubbles. Post implantation annealing at or below 400°C is found to strongly reduce implantation induced expansion for doses less than 3.5 × 1017 He+/cm2, but is observed to result in increased expansion above this dose. At temperatures above 400°C, expansion is increased for all doses investigated. Details of bubble development in the implanted layer are discussed and the manner in which surface bubbles develop from enlarged subsurface bubbles is illustrated.  相似文献   

10.
This paper presents the construction, use and characterisation of a laser-induced sealed plasma shutter to clip off the nitrogen pulse tail of a CO2-TEA laser-based lidar dial system. Investigation of the optimum gas filling pressure, temporal profile of the clipped pulse, and the laser threshold power intensities to achieve ionisation growth and breakdown in helium, argon, and nitrogen are also presented. Values of these power density thresholds lie between 3×1011 W cm-2–5×1012 W cm-2, 2×1011 W cm-2–2×1012 W cm-2 and 3×1013 W cm-2–2×1014 W cm-2 for helium, argon, and nitrogen, respectively. The range resolution attainable with the present clipped pulses is 15 m, which is 30 times better than that readily obtained with the nitrogen-tailed pulses. Field measurements of the lidar returns with the clipped pulse from a co-operative target are presented. Received: 27 December 1999 / Revised version: 11 February 2000 / Published online: 27 April 2000  相似文献   

11.
The self-diffusion coefficients of ions of the three chemical elements forming lithium hydroxide have been determined by the crystal-crystal and crystal-gas isotope exchange method in the temperature range 500–720 K. Crystal samples with different isotope compositions have been grown by the Bridgman method from melts. The melting temperature is 743 ± 2 K. Original methods have been developed for high-precision measurements of the isotope ratios of all three elements, i.e., lithium (6Li/7Li), hydrogen (H/D), and oxygen (16O/18O), and their changes after diffusion annealings with the use of the same sample. The self-diffusion coefficients of lithium and hydrogen ions differ but by a factor of no more than 3–5; however, their values exceed those for oxygen by several orders of magnitude. In particular, at 670 K, they are equal to 6.0 × 10−9, 3.2 × 10−9, and 2.0 × 10−12 cm2 s−1 for hydrogen, lithium, and oxygen, respectively. In the range 680–720 K, the self-diffusion coefficients of hydrogen and lithium increase sharply with increasing temperature to approximately 10−6 cm2 s−1. A probable mechanism of migration of protons and lithium ions in LiOH and the role played in this process by the oxygen ions with a lower mobility have been discussed.  相似文献   

12.
High voltage electron microscopy studies have been performed on irradiated pure silica and borosilicate glasses to check their long-term stability when these materials are employed near high energy radioactive sources, such as in fusion reactors and during the storage of nuclear waste. The intense energetic beam of electrons produced by the Harwell 1 MeV microscope, ranging from 1017 to 1020 e/cm2/s has been focused upon specimens of various composition and impurity content at different temperatures up to about 850°C. Pure silica samples have also been bombarded with 46.5 MeV Ni+6 ions at the Variable Energy Cyclotron. It is found that while no significant changes are detectable in pure irradiated silica, clear evidence is present in complex borosilicate glasses for the growing of large defect clusters (over 1000 Å, resembling gas bubbles) after electron doses of about 8.5 × 1019 e/cm2 and dose rates exceeding 2 × 1018 e/cm2/sec. Moreover, small regions, about 100 Å wide, scattering electrons more than the matrix are also present. The nature of this fine microstructure has been established as a phase separation into crystalline tridymite. The observations are discussed in terms of their dependence on temperature, sample thickness, dose and dose rates.  相似文献   

13.
Electron drift velocities have been measured in helium and hydrogen at 77.6 K and gas density of 6.6×1021 cm?3 (approximately 80 atm). At these high densities the electron drift velocities do not depend only on the ratio of the electric field to gas density (E/N). At constantE/N the electron drift velocity decreases with increasing gas density. In helium a decrease was found down to 6.4% of the value at low density, in hydrogen down to 0.52%. The results are discussed in terms of theories of multiple scattering. Legler's theory fits our data in the lower density range, but at the highest densities predicts too small an effect. The percolation theory by Eggarter and Cohen gives no agreement with the experiment. Up to the highest densities we did not find bubbles; slow negative charge carriers could be identified as oxygen ions.  相似文献   

14.
The cross section of adsorbed hydrogen for the conduction electrons is evaluated according to the Boltzmann-Fuchs equation, the Greene and Soffer theories for surface scattering of the conduction electrons and to the change of the electrical resistivity due to hydrogen adsorbed on evaporated nickel films obtained experimentally by Suhrmann et al. The calculated cross sections are 2.0 × 10?15 cm2 and 1.8 × 10?15 cm2 at 273°K and 90°K respectively at a low coverage of hydrogen, which are consistent with the theoretical value 3.0 × 10?15 cm2 by Toya and reasonable compared with 0.9 × 10?15 cm2, the cross section of a gaseous hydrogen atom. The cross section decreases with increase of the coverage. This change is considered to be closely related to that of the heat of adsorption.  相似文献   

15.
The hydrodynamic features of an electric explosion in a bubble gas-liquid mixture are studied in the equilibrium approximation of the medium for the case of fine gas bubbles when the initial size of the latter ranges from units to tens of micrometers, as is observed when actual liquids contain natural gas. In mathematically modeling the electric-explosion processes, the characteristics of the hydrodynamic field were calculated, taking into account the finite size of the plasma piston for which the quasi-wave equation with the nonlinear barotropic equation of state of the mixture was numerically integrated, using an explicit finite-difference scheme in an ellipsoidal coordinate system. It is established that the presence of gaseous inclusions manifests itself when the gas concentration is ɛ 0≳10−4, whereas appreciable nonlinear effects appear when ɛ 0≳5×10−3. Zh. Tekh. Fiz. 68, 7–12 (July 1998)  相似文献   

16.
Thin transparent (for transmission electron microscopy, TEM) self-supported Si(001) films are irradiated on the (110) end face by low-energy (E=17 keV) He+ ions at doses ranging from 5×1016 to 4.5×1017 cm−2 at room temperature. The TEM study of the irradiated Si films along the ion range shows that an a-Si layer forms in the most heavily damaged region and helium pores (bubbles) with a density of up to 3×1017 cm−3 and 2–5 nm in diameter nucleate and grow across the entire width of this layer. The growth of nanopores in the a-Si layer is accompanied by their linear ordering into chains oriented along the ion tracks. The absence of pores in the region that remains crystalline and has the maximal concentration of implanted helium is explained by the desorption of helium atoms from the thin film during the irradiation. After annealing at 600°C, the volume of immobile pores in the remaining a-Si layer increases owing to the capture of helium atoms from the amorphous matrix. Solid solution is shown to be the prevalent state of the helium implanted into the amorphous silicon. Linear features with a diameter close to 1 nm and density of about 107 cm−1 discovered in the helium-doped a-Si layer are identified as low-energy He+ ion tracks.  相似文献   

17.
Ge Metal–Oxide–Semiconductor (MOS) capacitors with LaON gate dielectric incorporating different Ti contents are fabricated and their electrical properties are measured and compared. It is found that Ti incorporation can increase the dielectric permittivity, and the higher the Ti content, the larger is the permittivity. However, the interfacial and gate-leakage properties become poorer as the Ti content increases. Therefore, optimization of Ti content is important in order to obtain a good trade-off among the electrical properties of the device. For the studied range of the Ti/La2O3 ratio, a suitable Ti/La2O3 ratio of 14.7% results in a high relative permittivity of 24.6, low interface-state density of 3.1×1011 eV−1 cm−2, and relatively low gate-leakage current density of 2.0×10−3 A cm−2 at a gate voltage of 1 V.  相似文献   

18.
The properties of plasma injected into an open magnetic trap of uniform field from an independent UHF source have been investigated. Plasma is created in the UHF source at the frequency of 2400 MHz (power input 150 W) in the electron cyclotron resonance (ECR) regime at the pressure of neutral argon (10−5−10−2) torr. It is established that a rather quiescent target plasma with controlled density within the range of (2 × 108−2 × 1012) cm−3 and temperature 2–3eV is accumulated in the trap. It turned out that plasma lifetime in the trap is determined by a classical mechanism of particle escape at the expense of collisions, at fixed value of magnetic field in the trap it practically is not changed with the variation of neutral gas pressure and reaches the value ≈ 4×10−3 s at the magnetic field strength in the trap equal 1600 Oe.  相似文献   

19.
Magnetic videotape is of great interest for trapping and guiding cold atomic vapors, but was hitherto considered unsuitable for manipulating Bose–Einstein condensates (BEC) because of the presumed evolution of gas under vacuum. We have studied the outgassing in vacuum of the most promising tape, Ampex 398 Betacam SP. We find that after cleaning in ethanol and baking for 200 h at 100 °C the magnetic patterns are undisturbed and the outgassing is remarkably small: 4×10-10 Torr l s-1cm-2, due mostly to hydrogen. This makes the tape exceedingly attractive for manipulation of BEC. Received: 12 February 2001 / Published online: 7 June 2001  相似文献   

20.
Electron cyclotron resonance (ECR) plasma breakdown is studied in a small linear cylindrical system with four different gases — hydrogen, helium, argon and nitrogen. Microwave power in the experimental system is delivered by a magnetron at 2.45 ± 0.02 GHz in TE10 mode and launched radially to have extra-ordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the fundamental ECR surface (B = 875.0 G) resides at the geometrical centre of the plasma system. ECR breakdown parameters such as plasma delay time and plasma decay time from plasma density measurements are carried out at the centre using a Langmuir probe. The operating parameters such as working gas pressure (1 × 10−5−1× 10−2 mbar) and input microwave power (160–800 W) are varied and the corresponding effect on the breakdown parameters is studied. The experimental results obtained are presented in this paper.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号