首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-shot formaldehyde laser-induced fluorescence (LIF) imaging measurements in a technical scale turbulent flame have been obtained using XeF excimer laser excitation in the ?1A2-˜X1A1 transition at 353.2 nm. Measurements have been carried out in a 150 kW natural gas swirl burner where formaldehyde distribution fields have the potential, in combination with OH concentration fields, to visualize the heat release distribution and therefore give an optimal visualization of flame-front positions. The extended areas where formaldehyde was detected in the swirl flame indicates the presence of low temperature chemistry in preheated gas pockets before ignition. Received: 31 January 2000 / Revised version: 2 March 2000 / Published online: 5 April 2000  相似文献   

2.
The ability to use fiber-delivered erbium-laser radiation for non-contact arthroscopic meniscectomy in a liquid environment was studied. The laser radiation is transmitted through a water-vapor channel created by the leading part of the laser pulse. The dynamics of the channel formation around a submerged fiber tip was investigated with time-resolved flash photography. Strong pressure transients with amplitudes up to a few hundreds of bars measured with a needle hydrophone were found to accompany the channel formation process. Additional pressure transients in the range of kbars were observed after the laser pulse associated with the collapse of the vapor channel. Transmission measurements revealed that the duration the laser-induced channel stays open, and therefore the energy transmittable through it, is substantially determined by the laser pulse duration. The optimum pulse duration was found to be in the range between 250 and 350 µS. This was confirmed by histological evaluations of the laser incisions in meniscus: Increasing the pulse duration from 300 to 800 µs leads to a decrease in the crater depth from 1600 to 300 µm. A comparison of the histological examination after laser treatment through air and through water gave information on the influence of the vapor channel on the ablation efficiency, the cutting quality and the induced thermal damage in the adjacent tissue. The study shows that the erbium laser combined with an adequate fiber delivery system represents an effective surgical instrument liable to become increasingly accepted in orthopedic surgery.  相似文献   

3.
The amplitudes of terahertz pulses emitted from the surfaces of InAs, InSb, InGaAs, GaAs and Ge after their excitation by femtosecond 1 μm laser pulses was compared. It has been found that this effect is most efficient in p-type InAs. The mechanisms leading to the terahertz emission are investigated and discussed. It has been concluded that in the majority of the investigated semiconductors the main contribution to THz pulse emission comes from the electrical-field-induced optical rectification effect.  相似文献   

4.
This report summarizes several recent applications of quantitative laser-induced fluorescence techniques for the determination of species concentrations and temperature in combustion processes. Several lines of further development are discussed.  相似文献   

5.
We present a review of some recent results on high-order-harmonic generation, aiming at optimizing the photon flux to allow for future applications in extreme-ultra-violet non-linear optics. We first present new schemes to control phase matching of high harmonics in gases, by using the effect of the spatially varying atomic phase displayed by the high harmonics. An enhancement by a factor of 50 is observed in neon in conditions for which the gradient of the atomic dispersion balances the electronic dispersion. A new scheme to manipulate the laser field was demonstrated, and shown to improve phase matching. We then turn to high-harmonic generation by solid targets, and show that high harmonics generated by an intense 30-fs laser pulse remain collimated even at the threshold of the relativistic regime. Received: 5 December 2001 / Published online: 24 April 2002  相似文献   

6.
Femtosecond laser filamentation is particularly interesting for remote sensing pollutant in the atmosphere. In this work, we investigate the local shot-to-shot stability of the filament induced fluorescence of nitrogen in air. It is found that the root-mean square fluctuation of the fluorescence signal is at least one order of magnitude lower than that of the linear propagation case. In practice, it would contribute to improve the robustness of long distance spectroscopic analysis of the fluorescence of pollutant molecules inside the filament. We further point out that this unique property of filament induced fluorescence spectroscopy is because of the intensity clamping, a profound phenomenon of filamentation.  相似文献   

7.
Recent advances in terahertz imaging   总被引:10,自引:0,他引:10  
We review recent progress in the field of terahertz “T-ray” imaging. This relatively new imaging technique, based on terahertz time-domain spectroscopy, has the potential to be the first portable far-infrared imaging spectrometer. We give several examples which illustrate the possible applications of this technology, using both the amplitude and phase information contained in the THz waveforms. We describe the latest results in tomographic imaging, in which waveforms reflected from an object can be used to form a three-dimensional representation. Advanced signal processing tools are exploited for the purposes of extracting tomographic results, including spectroscopic information about each reflecting layer of a sample. We also describe the application of optical near-field techniques to the THz imaging system. Substantial improvements in the spatial resolution are demonstrated. Received: 29 January 1999 / Published online: 7 April 1999  相似文献   

8.
We report a technique for characterization of ultra-weak fluorescence based on a 355-nm pumped picosecond non-collinear optical parametric amplifier (OPA). In the experiment, we effectively reduced the strong super-fluorescence background by using a series of methods. With the picosecond OPA as the pre-amplifier and the gating pulse, the decay of the fluorescence of Rhodamine 6G dye in ethanol was measured and the fluorescence lifetime was found to be about 941 ps. The gain factor of this parametric fluorescence amplifier was measured to be ∼4.2 × 106, while the energy detection limit was ∼160 aJ per pulse within a 15-ps gating pulse.  相似文献   

9.
Femtosecond pulses at 496 nm were Raman-shifted in methane with 20% efficiency. The pulse duration could be reduced up to 6.5 times from 560 fs at the fundamental to 85 fs at the Stokes frequency (580nm), which is the shortest pulse duration generated in this way. It was shown experimentally that chirped-pulse Raman scattering avoids the limitations arising from self-phase modulation.  相似文献   

10.
We deal with computer simulation of a transient process in a self-pumped phase conjugate plane-curve loop mirror based on BaTiO3. In optimal circumstances the nonlinear reflectivity and fidelity of such a mirror respectively achieve 0.80-0.90 and 0.95-0.98. The generation of conjugate wave-front occurs due to scattering from the dynamic hologram which is produced in the region of self-intersection of forward and backward beams. In such a model the scenario of passing to unstable generation regimes is similar to the self-pumped phase conjugate plane-plane loop mirror and substantially differs from a single-crystal double phase conjugate mirror.  相似文献   

11.
We demonstrate an optical limiter for ultra-short (∼100-fs) laser pulses. The device has a dynamic range (= damage energy/onset-of-limiting energy) of more than 10000 and an onset-of-limiting energy of only ∼10 nJ. The output-pulse energy is kept below 1.3 μJ. The limiting mechanism is based on two-photon absorption and refractive nonlinearities in a 20-mm piece of ZnSe. We discuss the importance of the different nonlinearities, damage issues, and guidelines for the construction of the device. Received: 20 December 2001 / Revised version: 25 March 2002 / Published online: 8 May 2002  相似文献   

12.
The inertia of the Kerr-type nonlinear-optical response of bound electrons in solids is analyzed. It is shown that, in the case of wide-gap materials, away from the mid-gap frequency Eg/2?, Eg being the band gap, the inertia of this response becomes noticeable only for attosecond pulse features. However, near Eg/2?, where the inertia of bound-electron Kerr-type optical nonlinearity is enhanced by a strong dispersion of two-photon absorption and where the nonlinear refraction is especially strong, light pulses as long as tens and even hundreds of femtoseconds are expected to experience self-steepening and an asymmetric spectral broadening due to the retarded Kerr effect.  相似文献   

13.
Highly-chirped dissipative solitons of the cubic-quintic Ginzburg-Landau equation found in this work may provide a roadmap to design passively mode-locked laser oscillators that generate pulses of extremely high energy. We provide a region in the space of the system parameters where high-energy dissipative solitons are found, along with their typical spectral and temporal features.  相似文献   

14.
In order to minimize the effect of the unconsidered frequency components on the generated compression pulse, the phasing-blanking effect is taken into account of designing the one~dimensionai aperiodic domain reversal structure. Hierarchic genetic algorithm for the design of a domain reversal grating to modulate the spectrum and phase of the generated SH pulse simultaneously are presented. Our simulation shows that the quality of an output pulse is fairly improved.  相似文献   

15.
We have developed a novel interferometric autocorrelator composed of only reflective elements, which functions as a beam splitter and an optical delay line. Analytical expressions are derived to give second-order autocorrelation functions and deconvolution factors for various conditions. The measurement of femtosecond laser pulses by interferometric autocorrelation is demonstrated in the visible region. The results are compared with those by calculation. Received: 9 December 2002 Revised version: 18 February 2003 / Published online: 5 May 2003 RID="*" ID="*"Present address: Department of Physics, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1207, Japan RID="**" ID="**"Corresponding author. Fax: +81-48/462-4682, E-mail: asuda@postman.riken.go.jp  相似文献   

16.
The signal and idler output of an optical parametric oscillator are mixed in LiIO3 and AgGaS2 crystals to generate infrared pulses with a repetition rate of 82 MHz and an average power of 500µW. The infrared pulses are tunable between 2.5 and 5.5 µm, have a duration of 200 fs and a peak-to-peak intensity fluctuation of less than 5 %.  相似文献   

17.
We have explicitly identified coloured conical emission (CCE) and noncollinear optical parametric generation (OPC) by spectrum characterizations. With an experimental setup providing different pump pulse durations, CCE and noncollinear OPG are observed both alternatively and simultaneously. Comparisons between CCE and noncollinear OPC are studied. Accumulation behaviour of modulational instabilities is observed in our two-crystal cascaded configuration, which results in enhancement or depression of the CCE formation.  相似文献   

18.
The results of numerical modelling of cascaded compression of the first and second Stokes pulses during regenerative regime of the forward transient stimulated Raman amplification are presented for the case when the walk-off length of the first Stokes pulse due to group velocity mismatch is shorter than the length of the nonlinear medium. The influence of the initial amplitudes of the seed first Stokes pulses, its durations and its time delay with respect to the pump pulse, the Kerr nonlinearity of the medium on the conversion efficiency, duration and propagation factor M2 of the first and second Stokes pulse are studied. It is demonstrated that for the pump pulse duration of 1 ps the duration of the compressed second Stokes pulses in a KGW crystal near the beam axis may be approximately 14 times shorter than the pump pulse duration. It is shown that the propagation factor of the compressed pulses increases significantly because of complex spatial-temporal dynamics of compression and the influence of Kerr nonlinearity of Raman medium.  相似文献   

19.
Coloured conical emission (CCE) is investigated experimentally in a β-barium borate crystal excited by intense second harmonic femtosecond pulses. Contrary sequences of green and red conical emission with variable diameters are observed at different incidence angles, which is consistent with the calculation results based on the phase matching condition. As its broad range spectrum, CCE offers an alternative means to produce an ultrafast broadband light source. It is found that the spectrum of green CE shifts toward longer wavelengths as the length of BBO crystal increased.  相似文献   

20.
We build a compact high-conversion-efficiency and broadband tunable noncollinear optical parametric amplifier (OPA) in the infra-red (IR) pumped by a femtosecond Ti:sapphire CPA laser. The OPA consists of an internal seed of white-light continuum generator (WLG) and two noncollinear optical parametric amplifiers. The tunable wavelength range is from 1.2μm to 2.4μm for both signal and idle pulses. The total OPA efficiency in the last OPA stage reaches about 40% in a wider tunable spectral range (from 1.3μm to 1.7μm for signal pulse, from 1.5μm to 2.0 μm for idle pulse respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号