首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Methane activation by laser-ablated, excited Group 11 metal atoms has been carried out, leading to generation of CH(3)-MH, CH(3)-M, and CH(3)-MH(-), which are identified in the product infrared spectra on the basis of isotopic shifts and correlation with DFT calculated frequencies. The products reveal that C-H insertion by excited Au, Ag, and Cu readily occurs, and subsequent hydride-detachment or electron addition also follows. Each type of product has similar photochemical properties regardless of the metal. DFT computed energies reveal facile hydride dissociation and high electron affinities for the insertion complexes. The methyl metal species have the shortest C-M bonds, consistent with their highest calculated effective bond order, and the CH(3)-MH complexes have higher electron affinities than the metal atoms.  相似文献   

2.
用Vilsmeier醛基化反应的中间物直接胺解制备四苯基卟啉Schiff碱, 测定了四苯基卟啉蒽醌Schiff碱(P-AQ)在光照和氩气氛中的可见光谱差谱(光-暗)和荧光光谱。对结果进行了讨论, 并用在光辐照下P-AQ分子构型变化来解释分子内电子转移生成P^+.-AQ^-. 离子自由基的稳定性。  相似文献   

3.
在密度泛函理论B3LYP/6-311++G(d,p)及MP2/6-311++G(d,p)水平上研究了单电子锂键复合物Y…Li—CH3[Y=CH3, CH2CH3, CH(CH3)2, C(CH3)3]的结构与性质. 结果表明, 三种单电子锂键复合物H3CH2C…Li—CH3(II), (H3C)2HC…Li—CH3(III)和(H3C)3C…Li—CH3(IV)单电子锂键强度依II(-26.7 kJ·mol-1)相似文献   

4.
A new series of 5-(4'-substituted)phenylazo-8-hydroxyquinolines (H[L-R]; R = N(CH(3))(2), C(2)H(5), n-C(4)H(9), C(CH(3))(3), H, and F, ) has been prepared and the corresponding Zn[L-R](2) (1a-6a) and Al[L-R](3) (1b-6b) complexes successfully synthesized. These compounds have been studied in order to design new molecular materials with enhanced electron transport properties. The obtained species have been extensively characterized by absorption and emission spectra and by cyclic voltammetric measurements. Experimental and computational results show that the Zn[L-N(CH(3))(2)].2H(2)O (1a) and Al[L-N(CH(3))(2)](1b) complexes only feature luminescence (at 620 and 600 nm), respectively. The unique effects, which are induced by the N=N-C(6)H(4)-N(CH(3))(2) group, are further proved by a reversible electron transfer process detected by cyclic voltammetry. These outcomes, discussed on the basis of theoretical calculations performed on the (H[L-N(CH3)2])-, H[L-N(CH3)2] and (H[L-N(CH3)(2)])+ species, suggest that metal complexes formed by 5-(4'-N,N-dimethylamino)phenylazo-8-hydroxyquinoline should be considered as electron transport materials suitable for applications in photonic devices.  相似文献   

5.
The features of blue- and red-shifted electron acceptor-donor (ACH/B) hydrogen bonds have been compared by using quantum chemical calculations. The geometry, the interaction energy and the vibrational frequencies of both blue- (ACH=F3CH, Cl3CH with B=FCD3) and red-shifted (ACH=F3CH, Cl3CH with B=NH3 and ACH=CH3CCH with B=FCD3, NH3) complexes were obtained by using ab initio MP2(Full)/6-31+G(d,p) calculations with the a priori basis-set superposition error (BSSE) correction method. One-dimensional potential energy and dipole moment functions of the dimensionless normal coordinate Q1, corresponding to the CH stretching mode of ACH, have been compared for both types of complexes. Contributions of separate components of the interaction energy to the frequency shift and the effect of electron charge transfer were examined for a set of intermolecular distances by using the symmetry-adapted perturbation theory (SAPT) approach and natural bond orbitals (NBO) population analysis.  相似文献   

6.
A range of oxo-centred, carboxylate bridged tri-iron complexes of general formula [Fe3(mu3-O)(O2CR)6L3]ClO4(R=CH2CN, CH2F, CH2Cl, CH2Br, p-NO2C6H4; L=pyridine, 3-methylpyridine, 4-methylpyridine, 3,5-dimethylpyridine, 3-cyanopyridine and 3-fluoropyridine) have been prepared and characterised. The choice of R and L was dictated by the requirement that the complexes undergo a one-electron reduction when reacted with verdazyl radicals. All except the complexes where L=pyridine and R=CH2CN, CH2Cl and p-NO2C6H4 have not been previously reported. The redox behaviour of these compounds has been investigated using cyclic voltammetry in acetonitrile in the absence and in the presence of free L. In general, all complexes exhibited reversible one-electron reductions. Electrochemical behaviour improved in the presence of an excess of L. The kinetics of the electron transfer reaction observed when acetonitrile solutions of the complexes were reacted with a range of verdazyl radicals were monitored using stopped-flow spectrophotometry. Under the experimental conditions, the reactions were quite rapid and were monitored under second-order conditions. Marcus linear free energy plots indicated that the outer-sphere electron transfer reactions were non-adiabatic in nature. Nevertheless, application of the self-exchange rate constants of the verdazyl radicals, k11, and the tri-iron complexes, k22, to the Marcus cross-relation resulted in calculated values of the cross-reaction rate constant, k12, that were within a factor of five of the experimentally determined value.  相似文献   

7.
Hydrogen-bonded complexes of pentachlorocyclopropane with the bases acetonitrile, ammonia, monomethylamine, and dimethylamine have been isolated and characterized for the first time in argon matrices at 16 K. Coordination of the proton of pentachlorocyclopropane (Pccp) to the electron donor (N) of the base was evidenced by red shifts of the CH stretching mode. These shifts, which range from 22 to 170 cm(-1), increase in the order CH3CN, NH3, (CH3)NH2, and (CH3)2NH. Density functional theory (DFT) calculations at the B3LYP level agree well with experiment and support the formation of 1:1 complexes of Pccp/base. Distinct changes were observed in ring modes as well as CCl and CCl2 modes. The hydrogen bond energy of the complexes varies from 2.95 to 4.22 kcal/mol and is stronger than our previously studied bromocyclopropane-ammonia complex (2.35 kcal/mol, MP2).  相似文献   

8.
Fragments of C24H12, adapted from a variety of armchair [(n,n), (n = 5, 7, and 8)] and zigzag [(m,0) (m = 8, 10, and 12)] single-walled carbon nanotube (SWCNT), are used to model corresponding SWCNTs with different diameters and electronic structures. The parallel binding mainly through pi...pi stacking interaction, as well as the perpendicular binding via cooperative NH...pi and CH...pi between cytosine and the fragments of SWCNT have been extensively investigated with a GGA type of DFT, PW91LYP/6-311++G(d,p). The eclipsed tangential (ET) conformation with respect to the six-membered ring of cytosine and the central ring of SWCNT fragments is less stable than the slipped tangential (ST) conformation for the given fragment; perpendicular conformations with NH2 and CH ends have higher negative binding energy than those with NH and CH ends. At PW91LYP/6-311++G(d,p) level, two tangential complexes are less bound than perpendicular complexes. However, as electron correlation is treated with MP2/6-311G(d,p) for PW91LYP/6-311++G(d,p) optimized complexes, it turns out there is an opposite trend that two tangential complexes become more stable than three perpendicular complexes. This result implies that electron correlation, a primary source to dispersion energy, has more significant contributions to the pi...pi stacking complexes than to the complexes via cooperative NH...pi and CH...pi interactions. In addition, it was found for the first time that binding energies for two tangential complexes become more negative with increasing nanotube diameter, while those for three perpendicular complexes have a weaker dependence on the curvature; i.e., binding energies are slightly less and less negative. The performance of a novel hybrid DFT, MPWB1K, was also discussed.  相似文献   

9.
Simple synthetic di-iron dithiolate complexes provide good models of the composition of the active site of the iron-iron hydrogenase enzymes. However, the formally Fe(I)Fe(I) complexes synthesized to date fail to reproduce the precise orientation of the diatomic ligands about the iron centers that is observed in the molecular structure of the reduced form of the enzyme active site. This structural difference is often used to explain the fact that the synthetic di-iron complexes are generally poor catalysts when compared to the enzyme. Herein, density functional theory computations are used for the rational design of synthetic complexes as structural models of the reduced form of the enzyme active site. These computations suggest several possible synthetic targets. The synthesis of complexes containing five-atom S-to-S linkers of the form S(CH2)2X(CH2)2S (X = CH2, NH, or O) or pendant functionalities attached to the three-carbon framework is one method. Another approach is the synthesis of asymmetrically substituted complexes, in which one iron center has strongly electron donating ligands and the adjacent iron center has strongly electron accepting ligands. The combination of a sterically demanding S-to-S linker and asymmetric substitution of the CO ligands is predicted to be a particularly effective synthetic target.  相似文献   

10.
To achieve a systematic understanding of the influence of microsolvation on the electron accepting behaviors of nucleobases, the reliable theoretical method (B3LYP/DZP++) has been applied to a comprehensive conformational investigation on the uracil-water complexes U-(H(2)O)(n) (n = 1, 2, 3) in both neutral and anionic forms. For the neutral complexes, the conformers of hydration on the O2 of uracil are energetically favored. However, hydration on the O4 atom of uracil is more stable for the radical anions. The electron structure analysis for the H-bonding patterns reveal that the CH...OH(2) type H-bond exists only for di- and trihydrated uracil complexes in which a water dimer or trimer is involved. The electron density structure analysis and the atoms-in-molecules (AIM) analysis for U-(H(2)O)(n) suggest a threshold value of the bond critical point (BCP) density to justify the CH...OH(2) type H-bond; that is, CH...OH(2) could be considered to be a H-bond only when its BCP density value is equal to or larger than 0.010 au. The positive adiabatic electron affinity (AEA) and vertical detachment energy (VDE) values for the uracil-water complexes suggest that these hydrated uracil anions are stable. Moreover, the average AEA and VDE of U-(H(2)O)(n) increase as the number of the hydration waters increases.  相似文献   

11.
A new kind of single-electron lithium bonding complexes H(3)C...LiY (Y=H, F, OH, CN, NC, and CCH) was predicted and characterized in the present paper. Their geometries (C(3v)) with all real harmonic vibrational frequencies were obtained at the MP2/aug-cc-pVTZ level. For each H(3)C...LiY complex, single-electron Li bond is formed between the unpaired electron of CH(3) radical and positively charged Li atom of LiY molecule. Due to the formation of the single-electron Li bond, the C-H bonds of the CH(3) radical bend opposite to the LiY molecule and the Li-Y bond elongates. Abnormally, the three H(3)C...LiY (Y=CN, NC, and CCH) complexes exhibit blueshifted Li-Y stretching frequencies along with the elongated Li-Y bonds. Natural bond orbital analyses suggest ca. 0.02 electron transfer from the methyl radical (CH(3)) to the LiY moiety. In the single occupied molecular orbitals of the H(3)C...LiY complexes, it is also seen that the electron could of the CH(3) radical approaches the Li atom. The single-electron Li bond energies are 5.20-6.94 kcal/mol for the H(3)C...LiY complexes at the CCSD(T)aug-cc-pVDZ+BF (bond functions) level with counterpoise procedure. By comparisons with some related systems, it is concluded that the single-electron Li bonds are stronger than single-electron H bonds, and weaker than conventional Li bonds and pi-Li bonds.  相似文献   

12.
Interplay between CH…π and hydrogen bond interactions of benzamide has been investigated by quantum mechanical calculations. The effect of the substituents on geometrical parameters has also been studied at the B3LYP level with 6-311++G(d,p) basis set. The electron-withdrawing substituents enhance the total interaction energy of the complexes. The results indicated that the cooperativity of interactions leads to extra stability of the ternary complexes. The CH…π interaction and the hydrogen bond energies have been estimated using the electron densities calculated by the atoms in molecules (AIM) method at hydrogen bond critical points. The strength of hydrogen bonding increases in the presence of CH…π interaction in the ternary complexes. The effect of CH…π interaction on the hydrogen bond interaction has also been studied by the natural bond orbital, AIM and the molecular electrostatic potential analyses.  相似文献   

13.
To evidentiate the role of the nature of sulfonate ancillary ligands on the value of the quadratic hyperpolarizability of Zn(II) complexes with stilbazole-like ligands, the second-order nonlinear optical (NLO) properties of [ZnY(2)(4,4'-trans-NC5H4CH=CHC6H4NMe2)2] complexes (Y = CF3SO3, CH3SO3, or p-CH3C6H4SO3) are investigated. By working at relatively high concentrations (>3 x 10(-4) M), the positive effect of the triflate ligand remains unique while, with nonfluorinated sulfonate ligands, the second-order NLO response is comparable to that of the related complexes with acetate or trifluoroacetate as ancillary ligands. However, at dilutions higher than 10(-4) M, all of the sulfonate complexes reach huge quadratic hyperpolarizabilities because of solvolysis with the formation of cationic species such as [ZnY(4,4'-trans-NC5H4CH=CHC6H4NMe2)2]+, characterized by a large second-order NLO response. This view is supported by careful conductivity measurements. The same behavior occurs if 4,4'-trans-NC5H4CH=CHC6H4NMe2 is substituted by 4,4'-trans,trans-NC5H4(CH=CH)2C6H4NMe2.  相似文献   

14.
Dessent CE  Kim J  Johnson MA 《Faraday discussions》2000,(115):395-406; discussion 407-29
We report the observation of resonance structure in the absorption and X-/NO2- photofragment action spectra of the X-.CH3NO2 (X- = I- and Br-) complexes in the region above the electron detachment threshold. The resonance structure corresponds to peaks which appear at the onsets for vibrational excitation of the -NO2 wag, scissors, and stretch modes of neutral CH3NO2, the modes which most strongly distort upon electron capture into its pi* lowest unoccupied molecular orbital. We attribute the peaks to excitation of vibrational Feshbach resonances of the CH3NO2- transient negative ion, where near-threshold excitation of X-.CH3NO2 spectroscopically accesses states of the free electron-CH3NO2 system.  相似文献   

15.
The structure and electrochemical properties of a series of bis(imino)pyridine Co(II) complexes (NNN)CoX(2) and [(NNN)(2)Co][PF(6)](2) (NNN = 2,6-bis[1-(4-R-phenylimino)ethyl]pyridine, with R = CN, CF(3), H, CH(3), OCH(3), N(CH(3))(2); NNN = 2,6-bis[1-(2,6-(iPr)(2)-phenylimino)ethyl]pyridine and X = Cl, Br) were studied using a combination of electrochemical and theoretical methods. Cyclic voltammetry measurements and DFT/B3LYP calculations suggest that in solution (NNN)CoCl(2) complexes exist in equilibrium with disproportionation products [(NNN)(2)Co](2+) [CoCl(4)](2-) with the position of the equilibrium heavily influenced by both the solvent polarity and the steric and electronic properties of the bis(imino)pyridine ligands. In strong polar solvents (e.g., CH(3)CN or H(2)O) or with electron donating substituents (R = OCH(3) or N(CH(3))(2)) the equilibrium is shifted and only oxidation of the charged products [(NNN)(2)Co](2+) and [CoCl(4)](2-) is observed. Conversely, in nonpolar organic solvents such as CH(2)Cl(2) or with electron withdrawing substituents (R = CN or CF(3)), disproportionation is suppressed and oxidation of the (NNN)CoCl(2) complexes leads to 18e(-) Co(III) complexes stabilized by coordination of a solvent moiety. In addition, the [(NNN)(2)Co][PF(6)](2) complexes exhibit reversible Co(II/III) oxidation potentials that are strongly dependent on the electron withdrawing/donating nature of the N-aryl substituents, spanning nearly 750 mV in acetonitrile. The resulting insight on the regulation of redox properties of a series of bis(imino)pyridine cobalt(II) complexes should be particularly valuable to tune suitable conditions for reactivity.  相似文献   

16.
Molecular recognition events in biological systems are driven by non‐covalent interactions between interacting species. Here, we have studied hydrogen bonds of the CH???Y type involving electron‐deficient CH donors using dispersion‐corrected density functional theory (DFT) calculations applied to acetylcholinesterase–ligand complexes. The strengths of CH???Y interactions activated by a proximal cation were considerably strong; comparable to or greater than those of classical hydrogen bonds. Significant differences in the energetic components compared to classical hydrogen bonds and non‐activated CH???Y interactions were observed. Comparison between DFT and molecular mechanics calculations showed that common force fields could not reproduce the interaction energy values of the studied hydrogen bonds. The presented results highlight the importance of considering CH???Y interactions when analysing protein–ligand complexes, call for a review of current force fields, and opens up possibilities for the development of improved design tools for drug discovery.  相似文献   

17.
The energy and electron transfer processes taking place in binuclear polypyridine complexes of ruthenium and osmium based on the tetrapyrido[3,2-a:2',3'-c:3' ',2' '-h:2' "-3' "-j]phenazine bridging ligand (tpphz) have been investigated by ultrafast absorption spectroscopy. In the binuclear complexes, each chromophore is characterized by two spectrally distinguishable metal-to-ligand charge transfer (MLCT) excited states: MLCT1 (with promoted electron mainly localized on the bpy-like portion of tpphz, higher energy) and MLCT0 (with promoted electron mainly localized on the pyrazine-like portion of tpphz, lower energy). In the homodinuclear complexes Ru(II)-Ru(II) and Os(II)-Os(II), MLCT1 --> MLCT0 relaxation (intraligand electron transfer) is observed, with strongly solvent-dependent kinetics (ca. 10(-10) s in CH2Cl2, ca. 10(-12) s in CH3CN). In the heterodinuclear Ru(II)-Os(II) complex, *Ru(II)-Os(II) --> Ru(II)-Os(II) energy transfer takes place by two different sequences of time-resolved processes, depending on the solvent: (a) in CH2Cl2, ruthenium-to-osmium energy transfer at the MLCT1 level followed by MLCT1 --> MLCT0 relaxation in the osmium chromophore, (b) in CH3CN, MLCT1 --> MLCT0 relaxation in the ruthenium chromophore followed by osmium-to-ruthenium metal-to-metal electron transfer. In the mixed-valence Ru(II)-Os(III) species, the *Ru(II)-Os(III) --> Ru(III)-Os(II) electron transfer quenching is found to proceed by two consecutive steps in CH3CN: intraligand electron transfer followed by ligand-to-metal electron transfer. On a longer time scale, charge recombination leads back to the ground state. Altogether, the results show that the tpphz bridge plays an active mechanistic role in these systems, efficiently mediating the transfer processes with its electronic levels.  相似文献   

18.
Products of reactions between the book and kite isomers of Al3O3- and three important molecules are studied with electronic structure calculations. Dissociative adsorption of H2O or CH3OH is highly exothermic and proton-transfer barriers between anion-molecule complexes and the products of these reactions are low. For NH3, the reaction energies are less exothermic and the corresponding barriers are higher. Depending on experimental conditions, Al3O3- (NH3) coordination complexes or products of dissociative adsorption may be prepared. Vertical electron detachment energies of stable anions are predicted with ab initio electron propagator calculations and are in close agreement with experiments on Al3O3- and its products with H2O and CH3OH. Changes in the localization properties of two Al-centered Dyson orbitals account for the differences between the photoelectron spectra of Al3O3- and those of the product anions.  相似文献   

19.
Bell CJ  Gellene GI 《Faraday discussions》2001,(118):477-85; discussion 487-503
Ab initio investigations at the MP2 and CCSD(T) level with augmented double and triple zeta basis sets have identified various stationary points on the B+/nCH4, n = 1, 2 hypersurfaces. The electrostatic complexes show a strong variation in the sequential binding energy with De for the loss of one CH4 molecule calculated to be 16.5 and 6.8 kcal mol-1 for the n = 1 and n = 2 complexes, respectively. The covalent molecular ion, CH3BH+, is found to have the expected C3 nu geometry and to be strongly bound by 84.0 kcal mol-1 with respect to B+ + CH4. The interaction of CH4 with CH3BH+ is qualitatively very similar to the interaction of CH4 with HBH+, however, the binding is only about 50% as strong due to the electron donating characteristic of the methyl group. Of particular interest are the insertion transition states which adopt geometries allowing the B+ ion to interact with multiple sigma bonds. In the n = 1 case, the interaction with two CH bonds lowers the insertion activation energy by about 25 kcal mol-1 from that expected for a mechanism involving only one sigma bond. For n = 2, B+ interacts with two CH sigma bonds from one CH4 and one CH sigma bond from the other CH4 leading to an additional activation energy decrease of about 15.7 kcal mol-1 relative to B+ + nCH4.  相似文献   

20.
The effect of sterically encumbering ligands on the electronic structure of oxomolybdenum tetrathiolate complexes was determined using a combination of electronic absorption and magnetic circular dichroism spectroscopies, complimented by DFT bonding calculations, to understand geometric and electronic structure contributions to reduction potentials. These complexes are rudimentary models for a redox-active metalloenzyme active site in a protein matrix and allow for detailed spectroscopic probing of specific oxomolybdenum-thiolate interactions that are directly relevant to Mo-S(cysteine) bonding in pyranopterin molybdenum enzymes. Data are presented for three para-substituted oxomolybdenum tetrathiolate complexes ([PPh4][MoO(p-SPhCONHCH3)4], [PPh4][MoO(p-SPhCONHC(CH2O(CH2)2CN)3)4], and [PPh4][MoO(p-SPhCONHC(CH2O(CH2)2COOCH2CH3)3)4]). The Mo(V/IV) reduction potentials of the complexes in DMF are -1213, -1251, and -1247 mV, respectively. The remarkably similar electronic absorption and magnetic circular dichroism spectra of these complexes establish that the observed reduction potential differences are not a result of significant changes in the electronic structure of the [MoOS4]- cores as a function of the larger ligand size. We provide evidence that these reduction potential differences result from the driving force for a substantial reorganization of the O-Mo-S-C dihedral angle upon reduction, which decreases electron donation from the thiolate sulfurs to the reduced molybdenum center. The energy barrier to favorable O-Mo-S-C geometries results in a reorganizational energy increase, relative to [MoO(SPh)4](-/2-), that correlates with ligand size. The inherent flexible nature of oxomolybdenum-thiolate bonds indicate that thiolate ligand geometry, which controls Mo-S covalency, could affect the redox processes of monooxomolybdenum centers in pyranopterin molybdenum enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号