首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development and use of a multiple-activation catalyst with ion-paired Lewis acid and Brønsted acid in an asymmetric aza-Diels–Alder reaction of simple dienes (non-Danishefsky-type electron-rich dienes) was achieved by utilizing the [FeBr2]+[FeBr4] combination prepared in situ from FeBr3 and chiral phosphoric acid. Synergistic effects of the highly active ion-paired Lewis acid [FeBr2]+[FeBr4] and a chiral Brønsted acid are important for promoting the reaction with high turnover frequency and high enantioselectivity. The multiple-activation catalyst system was confirmed using synchrotron-based X-ray absorption fine structure measurements, and theoretical studies. This study reveals that the developed catalyst promoted the reaction not only by the interaction offered by the ion-paired Lewis acid and the Brønsted acid but also noncovalent interactions.  相似文献   

2.
As it is well known, Brønsted acid sites in 8-MR of H-MOR (mordenite) are selective for dimethyl ether (DME) carbonylation to methyl acetate, whereas those in 12-MR are more prone to methanol to olefin reaction. Interestingly, we observed that the Brønsted acid sites in 12-MR of H-MOR are highly active for dimethoxymethane (DMM) carbonylation to methyl methoxyacetate (MMAc), whereas those in 8-MR led to the formation of DME. A series of modified H-MOR catalysts with accurate regulation of Brønsted acid sites in 12-MR or 8-MR were successfully synthesized by selective Na+ exchange or pyridine (Py) adsorption. Fourier-transform infrared (FT-IR) spectra, NH3-temperature-programmed desorption, Py-FT-IR, and inductively coupled plasma analyses suggested that Na+ first occupied Brønsted acid sites in 8-MR and then replaced those in 12-MR. All Na+-exchanged catalysts exhibited significant acceleration on MMAc selectivity, and the ratio of Brønsted acid amount in 12-MR/total had a positive correlation with MMAc selectivity. The MMAc selectivity (78%) of H-MOR-0.15Na was nearly 2.5 times more than that of untreated H-MOR (31%). However, H-MOR-Py showed almost no carbonylation activity (<1% MMAc) and a highest DME selectivity (98%), indicating that Brønsted acid sites in 12-MR were the only active sites for DMM carbonylation, whereas those in 8-MR tended to accelerate DMM disproportionation to DME.  相似文献   

3.
Summary of main observation and conclusion Electrophilic trifluoromethylthiolation has emerged as an important and efficient methodology for installing the SCF3 moiety onto an array of organic molecules.Due to the low reactivities of trifluoromethylthiolating reagents,these transformations often require activation through an exogenous Lewis/Br0nsted acid.We report herein the quantification of the activation capabilities of Lewis/Br0nsted acids for trifluoromethylthiolating reagents through computing the differenee in trifluoromethylthio cation donor ability(Tt+DA)between the"activated"and"unactivated"reagent.A moderate correlation is found to exist between the activation capability and Lewis acidity.  相似文献   

4.
Supercritical drying of alginate gels is an efficient way to prepare aerogels with high surface area (>300 m2 · g−1). FTIR spectroscopy allows to monitor the adsorption of NH3 from the gas phase onto the acid sites of the alginate. Free carboxylic groups are effective Brønsted sites, whereas the divalent cations used in the ionotropic gelation present the properties of Lewis sites. The ratio between Brønsted and Lewis sites provides infomation on the role of pH in alginate gelation and suggests that non-buffered gelation by transition-metal cations is a mixed ionotropic-acid process.  相似文献   

5.
《中国化学》2017,35(10):1529-1539
A series of mesoporous Nb and Nb‐W oxides were employed as highly active solid acid catalysts for the conversion of glucose to 5‐hydroxymethylfurfural (HMF ). The results of solid state 31P MAS NMR spectroscopy with adsorbed trimethylphosphine as probe molecule show that the addition of W in niobium oxide increases the number of Brønsted acid sites and decreases the number of Lewis acid sites. The catalytic performance for Nb‐W oxides varied with the ratio of Brønsted to Lewis acid sites and high glucose conversion was observed over Nb5W5 and Nb7W3 oxides with high ratios of Brønsted to Lewis acid sites. All Nb‐W oxides show a relatively high selectivity of HMF , whereas no HMF forms over sulfuric acid due to its pure Brønsted acidity. The results indicate fast isomerization of glucose to fructose over Lewis acid sites followed by dehydration of fructose to HMF over Brønsted acid sites. Moreover, comparing to the reaction occurred in aqueous media, the 2‐butanol/H2O system enhances the HMF selectivity and stabilizes the activity of the catalysts which gives the highest HMF selectivity of 52% over Nb7W3 oxide. The 2‐butanol/H2O catalytic system can also be employed in conversion of sucrose, achieving HMF selectivity of 46% over Nb5W5 oxide.  相似文献   

6.
Finding novel catalysts for the direct conversion of CO2 to fuels and chemicals is a primary goal in energy and environmental research. In this work, density functional theory (DFT) is used to study possible reaction mechanisms for the conversion of CO2 and C2H6 to propanoic acid over a gold‐exchanged MCM‐22 zeolite catalyst. The reaction begins with the activation of ethane to produce a gold ethyl hydride intermediate. Hydrogen transfers to the framework oxygen leads then to gold ethyl adsorbed on the Brønsted‐acid site. The energy barriers for these steps of ethane activation are 9.3 and 16.3 kcal mol?1, respectively. Two mechanisms of propanoic acid formation are investigated. In the first one, the insertion of CO2 into the Au?H bond of the first intermediate yields gold carboxyl ethyl as subsequent intermediate. This is then converted to propanoic acid by forming the relevant C?C bond. The activation energy of the rate‐determining step of this pathway is 48.2 kcal mol?1. In the second mechanism, CO2 interacts with gold ethyl adsorbed on the Brønsted‐acid site. Propanoic acid is formed via protonation of CO2 by the Brønsted acid and the simultaneous formation of a bond between CO2 and the ethyl group. The activation energy there is 44.2 kcal mol?1, favoring this second pathway at least at low temperatures. Gold‐exchanged MCM‐22 zeolite can therefore, at least in principle, be used as the catalyst for producing propanoic acid from CO2 and ethane.  相似文献   

7.
The strongest carborane acid, H(CHB11F11), protonates CO2 while traditional mixed Lewis/Brønsted superacids do not. The product is deduced from IR spectroscopy and calculation to be the proton disolvate, H(CO2)2+. The carborane acid H(CHB11F11) is therefore the strongest known acid. The failure of traditional mixed superacids to protonate weak bases such as CO2 can be traced to a competition between the proton and the Lewis acid for the added base. The high protic acidity promised by large absolute values of the Hammett acidity function (H0) is not realized in practice because the basicity of an added base is suppressed by Lewis acid/base adduct formation.  相似文献   

8.
《化学:亚洲杂志》2017,12(17):2271-2277
Development of inexpensive, easily prepared, non‐toxic, and efficient catalysts for the cycloaddition of CO2 with epoxides to synthesize five‐membered cyclic carbonates is a very attractive topic in the field of CO2 transformation. In this work, we conducted the first work on the cycloaddition of CO2 with epoxides to produce cyclic carbonates catalyzed by a binary catalyst system consisting of KI and boron phosphate (BPO4), which are both inexpensive and non‐toxic, and various corresponding cyclic carbonates could be produced with high yields (93–99 %) at 110 °C with a CO2 pressure of 4 MPa under solvent‐free conditions. In the BPO4/KI catalyst system, BPO4, a Brønsted and Lewis acid hybrid, played the role of activating the epoxy ring through the formation of hydrogen bonds with Brønsted acidic sites and the interaction with Lewis acidic sites simultaneously, and thus enhanced the activity of KI for the cycloaddition of CO2 with epoxides significantly. Additionally, the activity of the BPO4/KI catalyst system showed no noticeable decrease after being reused five times, indicating that the BPO4 was stable under the reaction conditions.  相似文献   

9.
Ti-pillared bentonites (Ti-PBs) were synthesised using bentonite from the Hanç?l? region in Turkey. Ti(IV) chloride, Ti(IV) ethoxide and Ti(IV) propoxide were used as the titanium sources; the syntheses were carried out using different H+/Ti ratios, bentonite suspension percentages and calcination temperatures. Titanium was found in the form of titanium dioxide for all the sources. The Ti(IV) chloride source afforded a sample with a significantly higher specific BET surface area (by 323 m2 g?1), TiO2 content of 50.5 mass % and a more microporous structure with a micropore volume of 0.112 cm3 g?1; the Ti(IV) propoxide source afforded a more mesoporous structure with a higher total pore volume. The micropore region showed the formation of pores of different sizes, while prominent narrow peaks were obtained in the mesopore region. Ti-PBs, which exhibited only the anatase phase of titanium dioxide, yielded high Brønsted and Lewis acidities. When the rutile phase and the anatase phase occurred together, as a result of the lower TiO2 content, the Brønsted and Lewis acidities of the Ti-PBs decreased. The use of Ti(IV) chloride and Ti(IV) propoxide sources at H+/Ti ratios of 4.0 and a bentonite suspension percentage of 2.0 resulted in samples exhibiting strong Brønsted acidity.  相似文献   

10.
We have prepared Zn and free-base porphyrins appended with a fac-Re(phen)(CO)3Br (where phen is 1,10-phenanthroline) at the meso position of the porphyrin, and performed photocatalytic CO2 reduction using porphyrin–Re dyads in the presence of either triethylamine (TEA) or 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as an electron donor. The Zn porphyrin dyad showed a high turnover number for CO production compared with the free-base porphyrin dyad, suggesting that the central Zn ion of porphyrin plays an important role in suppressing electron accumulation on the porphyrin part and achieving high durability of the photocatalytic CO2 reduction using both TEA and BIH. The effect of acids on the CO2 reduction was investigated using the Zn porphyrin–Re dyad and BIH. Acetic acid, a relatively strong Brønsted acid, rapidly causes the porphyrin's color to fade upon irradiation and dramatically decreases CO production, whereas proper weak Brønsted acids such as 2,2,2-trifluoroethanol and phenol enhance the CO2 reduction.  相似文献   

11.
A detailed FTIR study of the effects of steaming and acid leaching on protonated Y faujasite (FAU) and EMT zeolites is provided and the results are thoroughly analysed. In particular, emphasis is placed on the Brønsted acidic evolution and acidic strength measurements for a large series of as‐modified zeolites using CO as a sensitive probe to distinguish various protonic sites. While an increase of acidity for framework OH groups is observed during the strengthening of dealumination for both FAU and EMT series, the steaming process also generates a large variety of additional Brønsted acidic groups. Regarding acidic strength, these heterogeneous OH groups are sensitive to post‐treatments and their existence strongly depends on the initial composition of the zeolites. The presence of residual Na+ cations in the starting materials induces dramatic Brønsted acidic changes after steaming. As a result, steamed zeolites that initially contain traces of sodium possess unusual acidic Brønsted groups with low acidity. This result contradicts the trend generally observed with framework OH groups, for which steaming results in an increase of Brønsted acidic strength. The study reveals that the situation is indeed more complex, as some compositions and post‐treatments strongly influence the Brønsted acidity of as‐steamed zeolites both in their nature and their corresponding acidic strength. By linking these IR‐compiled features to the as‐exposed modifications, a large acidity scale better suited to characterizing catalysts having Brønsted acidity expanding from lowest to highest strength is proposed.  相似文献   

12.
The nature of catalytic Brønsted sites in mazzite is clarified by molecular modeling combined with spectroscopy. Density Functional Theory study for periodic models of high-silica mazzite evidence that most stable bridging hydroxyls, noticeably binding CO probe, fall into two categories: Brønsted sites located in larger channels, characterized by higher OH frequency of bare hydroxyl with very large redshift upon CO interaction, and lower-frequency sites located in smaller channels, showing lower redshift. This fully corresponds to two bands obtained for OH stretch in IR spectra. Very good agreement between theory and experiment found in this work not only confirms that Brønsted sites studied here belong to the strongest acid sites among known zeolites but also clarifies their identity in mazzite. Location of sites with exceptionally large red shift upon CO adsorption at 12-T wide channel very well conforms to both intuitive expectations and predictions for other zeolites from former studies.  相似文献   

13.
Investigation on Acidity and Catalytic Activity of Deep-Bed Calcinated Zeolites NH4 NaY NMR and infrared techniques are applied to decationated zeolites NaY to study Brönsted acidity. The results are compared with measurements of catalytic activity and crystallinity of this zeolites. The number of OH groups which are able to form a pyridinium ion (PyH+) increases with increasing exchange degree and with increasing temperature of the sample. The rate of pyridinium ion formation as an equivalent of Brönsted acidity and the catalytic activity increase similarly with increasing exchange degree up to such values where a loss of crystallinity occurs.  相似文献   

14.
FTIR results on zeolite-supported Pt and Pd show that the presence of water during metal reduction modifies both the acid and the metal functions of these catalysts. The water treatment eliminates Lewis acid sites and lowers the concentration of Brønsted acid sites by partial dealumination. At low temperature CO is adsorbed on Brønsted sites; the position of the corresponding FRIR band indicates that for Pt/HMOR, (MOR = mordenite) unlike Pt/HY, the intrinsic acid strength of these sites is increased by the wet reduction procedure. FTIR spectra after CO adsorption at room temperature show that wet reduction markedly improves the dispersion of Pt in HMOR; this effect is weaker for HY and absent for the Na forms of the zeolites. Bands of gem-Pt(CO)2, which are indicative of very small, possibly electron-deficient Pt clusters, are detected in Pt/HMOR.  相似文献   

15.
The preparation of new organosoluble Lewis acidic polyoxometalates (POMs) is reported. These complexes were prepared by the incorporation of Zr, Sc, and Y atoms into the corresponding monolacunary Dawson [P2W17O61]10? and Keggin [PW11O39]7? polyoxotungstates. The catalytic activity of these compounds was evaluated for C? C bond formation in the Diels–Alder, Mannich, and Mukaiyama‐type reactions. Comparisons with previously described Lewis acidic POMs are reported. Competitive reactions between imines and aldehydes or between various imines demonstrated that fine tuning of the reactivity could be reached by varying the metal atom incorporated into the polyanionic framework. A series of experiments that employed pyridine derivatives allowed us to distinguish between the Lewis and induced Brønsted acidity of the POMs. These catalysts activate imines in a Lewis acidic way, whereas aldehydes are activated by indirect Brønsted catalysis.  相似文献   

16.
Are reactions employing Lewis acids really catalysed by those Lewis acids, or by “hidden Brønsted acids”, i.e. Brønsted acids generated in situ by hydrolysis? Testing of a series of reactions using Sc(III), Fe(III), In(III) and Y(III) by addition of 2,6-di-t-butyl-4-methylpyridine reveal that all are likely to follow the latter pathway. A reaction claimed to be catalysed by CBr4 through halogen bonding is also likely to be Brønsted acid catalysed.  相似文献   

17.
The acidic properties of both HZSM-5 and SiO2 supported MoO3 and carburized MoO3 have been investigated by FTIR spectroscopy. Deposition of Mo caused the consumption of Brønsted acidic OH groups of HZSM-5 as shown by the changes in the ν(OH) region of the spectra and also by pyridine and low temperature CO adsorption measurements. Carburization of the sample did not result in regeneration of acidic OH groups of the zeolite. Mo reacted with OH groups during its deposition on SiO2. The results of both pyridine and CO adsorption measurements did not indicate the generation of Brønsted acidic sites on MoO3/SiO2 and carburized MoO3/SiO2. Lewis acid sites are formed, however, upon the deposition of Mo. Carburization led to stronger Lewis centers, which are probably the active sites—together with the carbide phase—in methane aromatization on MoO3/SiO2.  相似文献   

18.
Diarylvinylidenecyclopropanes undergo a novel rearrangement in the presence of the Brønsted acid Tf2NH (Tf: trifluoromethanesulfonyl) to give the corresponding naphthalene derivatives in good to high yields upon heating, whereas in the presence of the Brønsted acid toluene‐4‐sulfonic acid (p‐TSA), the corresponding triene derivatives are afforded in moderate to good yields under mild conditions. Corresponding mechanistic studies on the basis of density functional theory (DFT) with the Gaussian03 program by using the B3LYP method have revealed that the pKa value of the Brønsted acid, as well as the entropy and solvent effects, plays a significant role in this reaction; these factors can discriminate the differences in the reactivity and regioselectivity among the Brønsted acids used in this reaction. In the presence of Lewis acid Sn(OTf)2, a butatrienecyclopane can produce the corresponding ring‐opened products in moderate yields.  相似文献   

19.
《中国化学》2018,36(3):187-193
The production of fine chemicals using CO2 as C1 building block through inexpensive heterogeneous catalysts with high efficiency under low pressure is challenging. Herein we propose for the first time the utilization of a multifunctional heterogeneous zinc‐modified HZSM‐5 (ZnHZSM‐5) catalyst for upgrading CO2 by incorporation into cyclic carbonates from CO2 and epoxides. Owing to the nice surface properties such as abundant Lewis acid, Brønsted acid and Lewis base sites, large surface area, and plenty of micropores, CO2 could be concentrated and well activated in ZnHZSM‐5 verified by CO2‐TPD, TG‐MS, etc. Meanwhile, the epoxides were also activated through metal center and hydrogen bond. Therefore, the reaction can easily assemble at the catalyst interface and show exceptional performance, affording the aimed products with high yield of up to 99% in the presence of commercial tetra‐n‐propylammonium bromide (90% in kilogram scale with 0.004 mol% ZnHZSM‐5 and 0.015 mol% nPr4NBr).  相似文献   

20.
With P(CH3)3 as the probe molecule adsorbed on titanium silicalite (TS-1) zeolite, the special and important role of T12 site in MFI-type zeolite was clearly elucidated. There are altogether three active sites present in TS-1 zeolite with Ti at the T12 site. Owing to the preferential adsorption of probe molecules on the first Brönsted acidic site, the Ti12 center will probably fail to show Lewis acidity. The ionic [HP(CH3)3]+ species can be stabilized by the first or second Brönsted acidic site, with the former energetically favored. The latter was formed through the transfer of the ionic [HP(CH3)3]+ species from the first to the second Brönsted acidic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号