首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new method has been developed to design a focused library based on available active compounds using protein-compound docking simulations. This method was applied to the design of a focused library for cytochrome P450 (CYP) ligands, not only to distinguish CYP ligands from other compounds but also to identify the putative ligands for a particular CYP. Principal component analysis (PCA) was applied to the protein-compound affinity matrix, which was obtained by thorough docking calculations between a large set of protein pockets and chemical compounds. Each compound was depicted as a point in the PCA space. Compounds that were close to the known active compounds were selected as candidate hit compounds. A machine-learning technique optimized the docking scores of the protein-compound affinity matrix to maximize the database enrichment of the known active compounds, providing an optimized focused library.  相似文献   

2.
General, high-yielding MAOS protocols for the expedient synthesis of functionalized 3,6-disubstituted-[1,2,4]triazolo[4,3-b]pyridazines are described amenable to an iterative analog library synthesis strategy for the lead optimization of an M1 antagonist screening hit. Optimized compounds proved to be highly selective M1 antagonists.  相似文献   

3.
The design, synthesis, characterization, and screening of a large, encoded thiazolidinone library are described. Three sets of 35 building blocks were combined by encoded split-pool synthesis to give a library containing more than 42 000 members. Building block selection was based in part on a novel small molecule follicle stimulating hormone receptor agonist hit and in part for diversity. HPLC/MS techniques were applied at the single-bead level to build confidence in the reliability of library construction. Application of two distinct screening strategies resulted in the identification of compounds with significantly improved potency over the initial hit. This work demonstrates the versatility of encoded libraries for preparing a large number of analogues of a given hit while simultaneously generating a large collection of compounds for screening against other targets.  相似文献   

4.
General, high-yielding MAOS protocols for the expedient synthesis of functionalized 3,6-disubstituted-[1,2,4]triazolo[4,3-b]pyridazines are described amenable to an iterative analog library synthesis strategy for the lead optimization of an M1 antagonist screening hit. Optimized compounds proved to be highly selective M1 antagonists.  相似文献   

5.
Structure‐based design (SBD) can be used for the design and/or optimization of new inhibitors for a biological target. Whereas de novo SBD is rarely used, most reports on SBD are dealing with the optimization of an initial hit. Dynamic combinatorial chemistry (DCC) has emerged as a powerful strategy to identify bioactive ligands given that it enables the target to direct the synthesis of its strongest binder. We have designed a library of potential inhibitors (acylhydrazones) generated from five aldehydes and five hydrazides and used DCC to identify the best binder(s). After addition of the aspartic protease endothiapepsin, we characterized the protein‐bound library member(s) by saturation‐transfer difference NMR spectroscopy. Cocrystallization experiments validated the predicted binding mode of the two most potent inhibitors, thus demonstrating that the combination of de novo SBD and DCC constitutes an efficient starting point for hit identification and optimization.  相似文献   

6.
A novel and efficient encoding method based on mass spectrometry for "one-bead-one-compound" small molecule combinatorial libraries has been developed. The topologically segregated bifunctional resin beads with orthogonal protecting groups in the outer and inner regions are first prepared according to our previously published procedure. Prior to library synthesis, the inner core of each bead is derivatized with 3-4 different coding blocks on a cleavable linker. Each functional group on the scaffold is encoded by an individual coding block containing a functional group with the same chemical reactivity. During the library synthesis, the same chemical reactions take place on the scaffold (outer layer of the bead) and coding blocks (inner core of the bead) concurrently. After screening, the coding tags in the positive beads are released, followed by molecular mass determination using matrix-assisted laser desorption ionization Fourier transform mass spectrometry. The chemical structure of library compounds can be readily identified according to the molecular masses of the coding tags. The feasibility and efficiency of this approach were demonstrated by the synthesis and screening of a model small molecule library containing 84 672 member compounds, with a model receptor, streptavidin. Streptavidin binding ligands with structural similarity (17) were identified. The decoding results were clear and unambiguous.  相似文献   

7.
The current study investigates the combination of two recently reported techniques for the improvement of homology model-based virtual screening for G-protein coupled receptor (GPCR) ligands. First, ligand-supported homology modeling was used to generate receptor models that were in agreement with mutagenesis data and structure-activity relationship information of the ligands. Second, interaction patterns from known ligands to the receptor were applied for scoring and rank ordering compounds from a virtual library using ligand-receptor interaction fingerprint-based similarity (IFS). Our approach was evaluated in retrospective virtual screening experiments for antagonists of the metabotropic glutamate receptor (mGluR) subtype 5. The results of our approach were compared to the results obtained by conventional scoring functions (Dock-Score, PMF-Score, Gold-Score, ChemScore, and FlexX-Score). The IFS lead to significantly higher enrichment rates, relative to the competing scoring functions. Though using a target-biased scoring approach, the results were not biased toward the chemical classes of the reference structures. Our results indicate that the presented approach has the potential to serve as a general setup for successful structure-based GPCR virtual screening.  相似文献   

8.
Synthesis and screening of compound mixtures offer avenues to increase throughput and reduce cycle time in the discovery of new drugs and agrochemicals. Equations are derived which show that the efficiency of synthesis and screening of mixtures is a function of the screening hit rate and the number of compounds in each mixture when simple one-step deconvolution by retesting the individual compounds in each active mixture is employed. Values of hit rate and number of compounds in each mixture which afford various levels of increased efficiency are delineated. Two-step deconvolution, in which the active mixtures from the first round of testing are subdivided into mixtures with fewer compounds for a second round of mixture screening prior to final testing of individual compounds, is shown to be more efficient than simple one-step deconvolution under most conditions. For optimum efficiency, the number of compounds in each mixture in the second round testing should be the square root of the number of compounds in each mixture in the first round. At high hit rates the efficiency of the double scan or indexed approach to deconvolution is shown to be higher than that of simple deconvolution. This discussion is oriented mainly toward mixtures of 4-20 compounds and screens which give hit rates in the 1-10% range. The equations describing efficiency are applied in the context of a 49-member amide library produced as mixtures of seven compounds. This library includes the commercial herbicide pronamide and was screened for herbicidal and insecticidal utility.  相似文献   

9.
Fragment‐based drug design (FBDD) affords active compounds for biological targets. While there are numerous reports on FBDD by fragment growing/optimization, fragment linking has rarely been reported. Dynamic combinatorial chemistry (DCC) has become a powerful hit‐identification strategy for biological targets. We report the synergistic combination of fragment linking and DCC to identify inhibitors of the aspartic protease endothiapepsin. Based on X‐ray crystal structures of endothiapepsin in complex with fragments, we designed a library of bis‐acylhydrazones and used DCC to identify potent inhibitors. The most potent inhibitor exhibits an IC50 value of 54 nm , which represents a 240‐fold improvement in potency compared to the parent hits. Subsequent X‐ray crystallography validated the predicted binding mode, thus demonstrating the efficiency of the combination of fragment linking and DCC as a hit‐identification strategy. This approach could be applied to a range of biological targets, and holds the potential to facilitate hit‐to‐lead optimization.  相似文献   

10.
A dynamic combinatorial library (DCL) screening approach is described that permits direct identification of the effective (from ineffective) combination of building blocks in the equilibrating DCL. The approach uses Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) together with sustained off-resonance irradiation collision activated dissociation (SORI-CAD) to detect noncovalent protein-DCL ligand complexes under native conditions. It was shown that in a single, rapid experiment one could concurrently identify all the ligands of interest from the DCL against a background of inactive DCL ligands while still in the presence of the target protein. This result has demonstrated that mass spectrometry may provide a fast preliminary screening approach to identify DCL candidates for later verification with more traditional but time-consuming analysis. The MS/MS enables DCL mixtures to be effectively deconvoluted without the need for either chromatography, synthesis of DCL sub-libraries, conversion of the DCL to a static library, or disruption of the protein-ligand complexes before analysis--all typically necessary for the current screening method for DCLs.  相似文献   

11.
The challenging search of ligands for the amyloidogenic protein β2-microglobulin led us to set up an integrated strategy that combines analytical techniques and molecular modelling. Using a chemical library composed of 90 sulphonated molecules and a novel MS screening approach, we initially single out a few new binders. To check for anti-amyloid activity, the best hit obtained was thoroughly studied by docking analysis, affinity and refolding experiments by capillary electrophoresis and in vitro fibrillogenesis Thioflavin T test. Correlative analysis of the overall results obtained from the MS screening led to develop an equation able to identify the key factors of the affinity for β2-microglobulin and to predict the affinity for novel derivatives. The proposed equation was then used for a virtual screening of a large compound database. Studies on the new hit thus retrieved confirm the predictive potential of both the equation on affinity and of docking analysis on anti-amyloid activity.  相似文献   

12.
Antagonism of CCR9 is a promising mechanism for treatment of inflammatory bowel disease, including ulcerative colitis and Crohn’s disease. There is limited experimental data on CCR9 and its ligands, complicating efforts to identify new small molecule antagonists. We present here results of a successful virtual screening and rational hit-to-lead campaign that led to the discovery and initial optimization of novel CCR9 antagonists. This work uses a novel data fusion strategy to integrate the output of multiple computational tools, such as 2D similarity search, shape similarity, pharmacophore searching, and molecular docking, as well as the identification and incorporation of privileged chemokine fragments. The application of various ranking strategies, which combined consensus and parallel selection methods to achieve a balance of enrichment and novelty, resulted in 198 virtual screening hits in total, with an overall hit rate of 18%. Several hits were developed into early leads through targeted synthesis and purchase of analogs.  相似文献   

13.
An H/D exchange- and MALDI mass spectrometry-based screening assay was applied to search for novel ligands that bind to cyclophilin A, a potential therapeutic and diagnostic target in lung cancer. The assay is based on stability of unpurified proteins from rates of H/D exchange (SUPREX), which exploits the H/D exchange properties of amide protons to measure the increase in a protein's thermodynamic stability upon ligand binding in solution. The current study evaluates the throughput and efficiency with which 880 potential ligands from the Prestwick Chemical Library (Illkirch, France) could be screened for binding to cyclophilin A. Screening was performed at a rate of 3 min/ligand using a conventional MALDI mass spectrometer. False positive and false negative rates, based on a set of control data, were as low as 0% and 9%, respectively. Based on the 880-member library screening, a false positive rate of 0% was observed when a two-tier selection strategy was implemented. Although novel ligands for cyclophilin A were not discovered, cyclosporin A, a known ligand to CypA and a blind control in the library, was identified as a hit. We also describe a new strategy to eliminate some of the complications related to back exchange that can arise in screening applications of SUPREX.  相似文献   

14.
Methods for the rapid and inexpensive discovery of hit compounds are essential for pharmaceutical research and DNA‐encoded chemical libraries represent promising tools for this purpose. We here report on the design and synthesis of DAL‐100K, a DNA‐encoded chemical library containing 103 200 structurally compact compounds. Affinity screening experiments and DNA‐sequencing analysis provided ligands with nanomolar affinities to several proteins, including prostate‐specific membrane antigen and tankyrase 1. Correlations of sequence counts with binding affinities and potencies of enzyme inhibition were observed and enabled the identification of structural features critical for activity. These results indicate that libraries of this type represent a useful source of small‐molecule binders for target proteins of pharmaceutical interest and information on structural features important for binding.  相似文献   

15.
Virtual screening of large libraries of organic compounds combined with pharmacological high throughput screening is widely used for drug discovery in the pharmaceutical industry. Our aim was to explore the efficiency of using a biased 3D database comprising secondary metabolites from antiinflammatory medicinal plants as a source for the virtual screening. For this study pharmacophore models of cyclooxygenase I and II (COX-1, COX-2), key enzymes in the inflammation process, were generated with structure-based as well as common feature based modeling, resulting in three COX hypotheses. Four different multiconfomational 3D databases limited in molecular weight between 300 and 700 Da were applied to the screening in order to compare and analyze the obtained hit rates. Two of them were created in-house (DIOS, NPD). The database DIOS consists of 2752 compounds from phytochemical reports of antiinflammatory medicinal plants described by the ethnopharmacological source 'De material medica' of Pedanius Dioscorides, whereas NPD contains almost 80,000 compounds gathered arbitrarily from natural sources. In addition, two available multiconformational 3D libraries comprising marketed and development drug substances (DWI and NCI), mainly originating from synthesis, were used for comparison. As a test of the pharmacophore models' capability in natural sources, the models were used to search for known COX inhibitory natural products. This was achieved with some exceptions, which are discussed in the paper. Depending on the hypothesis used, DWI and NCI library searches produced hit rates in the range of 6.6% to 13.7%. A slight increase of the number of molecules assessed for binding was achieved with the database of natural products (NPD). Using the biased 3D database DIOS, however, the average increase of efficiency reached 77% to 133% compared to the hit rates resulting from WDI and NCI. The statistical benefit of a combination of an ethnopharmacological approach with the potential of computer aided drug discovery by in silico screening was demonstrated exemplified on the applied targets COX-1 and COX-2.  相似文献   

16.
Summary Proteins could be used to carry and deliver small compounds. As a tool for designing ligand binding sites in protein cores, a three-step virtual screening method is presented that has been optimised using existing data on T4 lysozyme complexes and tested in a newly engineered cavity in flavodoxin. The method can pinpoint, in large databases, ligands of specific protein cavities. In the first step, physico-chemical filters are used to screen the library and discard a majority of compounds. In the second step, a flexible, fast docking procedure is used to score and select a smaller number of compounds as potential binders. In the third step, a finer method is used to dock promising molecules of the hit list into the protein cavity, and an optimised free energy function allows discarding the few false positives by calculating the affinity of the modelled complexes. To demonstrate the portability of the method, several cavities have been designed and engineered in the flavodoxin from Anabaena PCC 7119, and the W66F/L44A double mutant has been selected as a suitable host protein. The NCI database has then been screened for potential binders, and the binding to the engineered cavity of five promising compounds and three tentative non-binders has been experimentally tested by thermal up-shift assays and spectroscopic titrations. The five tentative binders (some apolar and some polar), unlike the three tentative non-binders, are shown to bind to the host mutant and, importantly, not to bind to the wild type protein. The three-step virtual screening method developed can thus be used to identify ligands of buried protein cavities. We anticipate that the method could also be used, in a reverse manner, to identify natural or engineerable protein cavities for the hosting of ligands of interest.  相似文献   

17.
Chemoenzymatic parallel synthesis and high-throughput screening were employed to develop a multivalent aminoglycoside-polyamine library for use as high-affinity cation-exchange displacers and DNA-binding ligands. Regioselective lipase-catalyzed acylation, followed by chemical aminolysis, was used to generate vinyl carbonate and vinyl carbamate linkers, respectively, of the aminoglycosidic cores. These were further derivatized with polyamines, leading to library generation. A parallel batch-displacement assay was employed to identify the efficacy of the library candidates as potential displacers for protein purification. Using this approach, low-molecular-mass displacers with affinities higher than those previously observed have been identified. The aminoglycoside-polyamine library was also screened for DNA binding efficacy using an ethidium bromide displacement assay. These highly cationic molecules exhibited strong DNA-binding properties and may have potential for enhanced gene delivery.  相似文献   

18.
To realize the full potential of combinatorial chemistry-based drug discovery, generic and efficient tools must be developed that apply the strengths of diversity-oriented chemical synthesis to the identification and optimization of lead compounds for disease-associated protein targets. We report an affinity selection-mass spectrometry (AS-MS) method for protein-ligand affinity ranking and the classification of ligands by binding site. The method incorporates the following steps: (1) an affinity selection stage, where protein-binding compounds are selected from pools of ligands in the presence of varying concentrations of a competitor ligand, (2) a first chromatography stage to separate unbound ligands from protein-ligand complexes, and (3) a second chromatography stage to dissociate the ligands from the complexes for identification and quantification by MS. The ability of the competitor ligand to displace a target-bound library member, as measured by MS, reveals the binding site classification and affinity ranking of the mixture components. The technique requires no radiolabel incorporation or direct biochemical assay, no modification or immobilization of the compounds or target protein, and all reaction components, including any buffers or cofactors required for protein stability, are free in solution. We demonstrate the method for several compounds of wide structural variety against representatives of the most important protein classes in contemporary drug discovery, including novel ATP-competitive and allosteric inhibitors of the Akt-1 (PKB) and Zap-70 kinases, and previously undisclosed antagonists of the M(2) muscarinic acetylcholine receptor, a G-protein coupled receptor (GPCR). The theoretical basis of the technique is analyzed mathematically, allowing quantitative estimation of binding affinities and, in the case of allosteric interaction, absolute determination of binding cooperativity. The method is readily applicable to high-throughput screening hit triage, combinatorial library-based affinity optimization, and developing structure-activity relationships among multiple ligands to a given receptor.  相似文献   

19.
A one bead–one compound screening format is presented. Following solid‐phase synthesis on a photolabile linker, library compounds were readily released and screened inside polymer beads. The release of screening compounds was readily controlled by varying photolysis time and light intensity. Dose‐response experiments were carried out to effectively distinguish high‐ and low‐affinity ligands. A library containing 55 800 compounds was synthesized and screened in a fluorometric assay, thereby identifying potent HDAC inhibitors with IC50 values in the nanomolar range.  相似文献   

20.
In the continuing effort to find small molecules that alter protein function and ultimately might lead to new drugs, combinatorial chemistry has emerged as a very powerful tool. Contrary to original expectations that large libraries would result in the discovery of many hit and lead structures, it has been recognized that the biological relevance, design, and diversity of the library are more important. As the universe of conceivable compounds is almost infinite, the question arises: where is a biologically validated starting point from which to build a combinatorial library? Nature itself might provide an answer: natural products have been evolved to bind to proteins. Recent results in structural biology and bioinformatics indicate that the number of distinct protein families and folds is fairly limited. Often the same structural domain is used by many proteins in a more or less modified form created by divergent evolution. Recent progress in solid-phase organic synthesis has enabled the synthesis of combinatorial libraries based on the structure of complex natural products. It can be envisioned that natural-product-based combinatorial synthesis may permit hit or lead compounds to be found with enhanced probability and quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号