首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Serotonin receptor, 5-HT1AR, agonists and partial agonists have established drug candidates for psychiatric and neurologic disorders. Recently, we reported the synthesis and evaluation of arylpiperazine derivatives of 3,5-dioxo-(2H,4H)-1,2,4-triazine as 5-HT1AR ligands. Herein, we generated a homology model of the receptor and docked the ligands against it, predicted the stability of the receptor model and complexes by molecular dynamics and generated a 3D-QSAR model for the arylpiperazine derivatives of 3,5-dioxo-(2H,4H)-1,2,4-triazine. The model suggests the hydrophobic part that arises from the aromatic region and the electron withdrawing parts play a vital role in the agonist activity of the lead molecules.  相似文献   

2.
The complex pathophysiology of depression, together with the limits of currently available antidepressants, has resulted in the continuous quest for alternative therapeutic strategies. Numerous findings suggest that pharmacological blockade of α2-adrenoceptor might be beneficial for the treatment of depressive symptoms by increasing both norepinephrine and serotonin levels in certain brain areas. Moreover, the antidepressant properties of 5-HT7 receptor antagonists have been widely demonstrated in a large set of animal models. Considering the potential therapeutic advantages in targeting both α2-adrenoceptors and 5-HT7 receptors, we designed a small series of arylsulfonamide derivatives of (dihydrobenzofuranoxy)ethyl piperidines as dually active ligands. Following green chemistry principles, the designed compounds were synthesized entirely using a sustainable mechanochemical approach. The identified compound 8 behaved as a potent α2A/5-HT7 receptor antagonist and displayed moderate-to-high selectivity over α1-adrenoceptor subtypes and selected serotonin and dopaminergic receptors. Finally, compound 8 improved performance of mice in the forced swim test, displaying similar potency to the reference drug mirtazapine.  相似文献   

3.
Agarwood has been used for the administration of hypnotic therapy. Its aromatic scent induces a relaxed state. However, its aromatic constituents and the underlying molecular effect are still unclear. This study aims to determine the active substance and molecular mechanism of the hypnotic effect of agarwood essential oil (AEO) incense inhalation in insomniac mice. Insomnia models were induced by para-chlorophenylalanine (PCPA, 300 mg/kg) in mice. The sleep-promoting effect was evaluated. Neurotransmitter levels and its receptor were detected to explore the molecular mechanism. The effective components were analyzed by GC-Q/TOF-MS of AEO. The binding mechanisms of the core compounds and core targets were verified by molecular docking. These results showed that AEO inhalation could significantly shorten sleep latency and prolong sleep time, inhibit autonomous activity and exert good sedative and sleep-promoting effects. A mechanistic study showed that AEO inhalation increased the levels of γ-aminobutyric acid (GABAA), the GABAA/glutamic acid (Glu) ratio, 5-hydroxytryptamine (5-HT) and adenosine (AD), upregulated the expression levels of GluR1, VGluT1 and 5-HT1A and downregulated 5-HT2A levels. Component analysis showed that the most abundant medicinal compounds were eremophilanes, cadinanes and eudesmanes. Moreover, the docking results showed that the core components stably bind to various receptors. The study demonstrated the bioactive constituents and mechanisms of AEO in its sedative and hypnotic effects and its multicomponent, multitarget and multipathway treatment characteristics in PCPA-induced insomniac mice. These results provide theoretical evidence for insomnia treatment and pharmaceutical product development with AEO.  相似文献   

4.
Irritable bowel syndrome (IBS) is a chronic disease that causes abdominal pain and an imbalance of defecation patterns due to gastrointestinal dysfunction. The cause of IBS remains unclear, but intestinal-brain axis problems and neurotransmitters have been suggested as factors. In this study, chanoclavine, which has a ring structure similar to 5-hydroxytryptamine (5-HT), showed an interaction with the 5-HT3A receptor to regulate IBS. Although its derivatives are known to be involved in neurotransmitter receptors, the molecular physiological mechanism of the interaction between chanoclavine and the 5-HT3A receptor is unknown. Electrophysiological experiments were conducted using a two-electrode voltage-clamp analysis to observe the inhibitory effects of chanoclavine on Xenopus oocytes in which the h5-HT3A receptor was expressed. The co-application of chanoclavine and 5-HT resulted in concentration-dependent, reversible, voltage-independent, and competitive inhibition. The 5-HT3A response induced by 5-HT was blocked by chanoclavine with half-maximal inhibitory response concentration (IC50) values of 107.2 µM. Docking studies suggested that chanoclavine was positioned close F130 and N138 in the 5-HT3A receptor-binding site. The double mutation of F130A and N138A significantly attenuated the interaction of chanoclavine compared to a single mutation or the wild type. These data suggest that F130 and N138 are important sites for ligand binding and activity. Chanoclavine and ergonovine have different effects. Asparagine, the 130th amino acid sequence of the 5-HT3A receptor, and phenylalanine, the 138th, are important in the role of binding chanoclavine, but ergonovine has no interaction with any amino acid sequence of the 5-HT3A receptor. The results of the electrophysiological studies and of in silico simulation showed that chanoclavine has the potential to inhibit the hypergastric stimulation of the gut by inhibiting the stimulation of signal transduction through 5-HT3A receptor stimulation. These findings suggest chanoclavine as a potential antiemetic agent for excessive gut stimulation and offer insight into the mechanisms of 5-HT3A receptor inhibition.  相似文献   

5.
Long-chain arylpiperazine scaffold is a versatile template to design central nervous system (CNS) drugs that target serotonin and dopamine receptors. Here we describe the synthesis and biological evaluation of ten new arylpiperazine derivatives designed to obtain an affinity profile at serotonin 5-HT1A, 5-HT2A, 5-HT7 receptor, and dopamine D2 receptor of prospective drugs to treat the core symptoms of autism spectrum disorder (ASD) or psychosis. Besides the structural features required for affinity at the target receptors, the new compounds incorporated structural fragments with antioxidant properties to counteract oxidative stress connected with ASD and psychosis. All the new compounds showed CNS MultiParameter Optimization score predictive of desirable ADMET properties and cross the blood–brain barrier. We identified compound 12a that combines an affinity profile compatible with antipsychotic activity (5-HT1A Ki = 41.5 nM, 5-HT2A Ki = 315 nM, 5-HT7 Ki = 42.5 nM, D2 Ki = 300 nM), and compound 9b that has an affinity profile consistent with studies in the context of ASD (5-HT1A Ki = 23.9 nM, 5-HT2A Ki = 39.4 nM, 5-HT7 Ki = 45.0 nM). Both compounds also had antioxidant properties. All compounds showed low in vitro metabolic stability, the only exception being compound 9b, which might be suitable for studies in vivo.  相似文献   

6.
Background: Neurotic disturbances, anxiety, neurosis-like disorders, and stress situations are widespread. Benzodiazepine tranquillizers have been found to be among the most effective antianxiety drugs. The pharmacological action of benzodiazepines is due to their interaction with the supra-molecular membrane GABA-a-benzodiazepine receptor complex, linked to the Cl-ionophore. Benzodiazepines enhance GABA-ergic transmission and this has led to a study of the role of GABA in anxiety. The search for anxiolytics and anticonvulsive agents has involved glutamate-ergic, 5HT-ergic substances and neuropeptides. However, each of these well-known anxiolytics, anticonvulsants and cognition enhancers (nootropics) has repeatedly been reported to have many adverse side effects, therefore there is an urgent need to search for new drugs able to restore damaged cognitive functions without causing significant adverse reactions. Objective: Considering the relevance of epilepsy diffusion in the world, we have addressed our attention to the discovery of new drugs in this field Thus our aim is the synthesis and study of new compounds with antiepileptic (anticonvulsant) and not only, activity. Methods: For the synthesis of compounds classical organic methods were used and developed. For the evaluation of biological activity some anticonvulsant and psychotropic methods were used. Results: As a result of multistep reactions 26 new, five-membered heterocyclic systems were obtained. PASS prediction of anticonvulsant activity was performed for the whole set of the designed molecules and probability to be active Pa values were ranging from 0.275 to 0.43. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures, anti-thiosemicarbazides effect as well as some psychotropic effect. The biological assays evidenced that some of the studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of compounds is low and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity it was found that the selected compounds have an activating behavior and anxiolytic effects on the models of “open field” and “elevated plus maze” (EPM). The data obtained indicate the anxiolytic (anti-anxiety) activity of the derivatives of pyrimidines, especially pronounced in compounds 6n, 6b, and 7c. The studied compounds increase the latent time of first immobilization on the model of “forced swimming” (FST) and exhibit some antidepressant effect similarly to diazepam. Docking studies revealed that compound 6k bound tightly in the active site of GABAA receptor with a value of the scoring function that estimates free energy of binding (ΔG) at −7.95 kcal/mol, while compound 6n showed the best docking score and seems to be dual inhibitor of SERT transporter as well as 5-HT1A receptor. Conclusions: Тhe selected compounds have an anticonvulsant, activating behavior and anxiolytic effects, at the same time exhibit some antidepressant effect.  相似文献   

7.
In present work, a series of novel structural hybrids of 1,3,4-oxadiazole and carbamothioate was designed by chemical modification of 2-(4-isobutylphenyl)propanoic acid. Target compounds (7a-f) were synthesized in significant yields (84–88 %) by coupling compound (4) with different electrophiles under different reaction conditions. The structures of oxadiazole based carbamothionate derivatives were confirmed by spectroscopic (FTIR, 1H NMR, 13C NMR) and physiochemical methods. During in-vivo experimentation, all synthesized compounds were tested through 6 Hz (32 mA) and PTZ (80 mg/kg) mouse seizure models. The 7b and 7c showed significant outcomes (P < 0.05) in terms of seizure severity, protection and mortality. The behavioural outcomes of PTZ tests were further strengthened with video-electroencephalogram (vEEG) findings in which EEGs were analyzed for epileptic spikes to understand the impact of 7b and 7c treatment on these ictal activities. The 7b was found most efficient in reducing the seizure spiking activity in brains of PTZ-treated mice while both 7b and 7c significantly reduced overall PTZ-induced seizure severity. The molecular docking studies also predicted the BBB permeability, reduced binding energies and good compound interaction with GABAA receptors and SV2A protein. Therefore, the observed pharmacological outcomes might be attributed to the GABAA agonistic and SV2A modulating potential of these oxadiazole-carbamothioate hybrid compounds.  相似文献   

8.
Breast cancer is the most common cancer in women, responsible for over half a million deaths in 2020. Almost 75% of FDA-approved drugs are mainly nitrogen- and sulfur-containing heterocyclic compounds, implying the importance of such compounds in drug discovery. Among heterocycles, thiazole-based heterocyclic compounds have demonstrated a broad range of pharmacological activities. In the present study, a novel set of 1,3-thiazole derivatives was designed and synthesized based on the coupling of acetophenone derivatives, and phenacyl bromide was substituted as a key reaction step. The activity of synthesized compounds was screened against the proliferation of two breast cancer cell lines (MCF-7 and MDA-MB-231). Almost all compounds exhibited a considerable antiproliferative activity toward the breast cancer cells as compared to staurosporine, with no significant cytotoxicity toward the epithelial cells. Among the synthesized compounds, compound 4 exhibited the most potent antiproliferative activity, with an IC50 of 5.73 and 12.15 µM toward MCF-7 and MDA-MB-231 cells, respectively, compared to staurosporine (IC50 = 6.77 and 7.03 µM, respectively). Exploring the mechanistic insights responsible for the antiproliferative activity of compound 4 revealed that compound 4 possesses a significant inhibitory activity toward the vascular endothelial growth factor receptor-2 (VEGFR-2) with (IC50 = 0.093 µM) compared to Sorafenib (IC50 = 0.059 µM). Further, compound 4 showed the ability to induce programmed cell death by triggering apoptosis and necrosis in MCF-7 cells and to induce cell cycle arrest on MCF-7 cells at the G1 stage while decreasing the cellular population in the G2/M phase. Finally, detailed in silico molecular docking studies affirmed that this class of compounds possesses a considerable binding affinity toward VEGFR2 proteins. Overall, these results indicate that compound 4 could be a promising lead compound for developing potent anti-breast cancer compounds.  相似文献   

9.
Human serum paraoxonase 1 (PON1; EC 3.1.8.1) is a high-density lipoprotein associated, calcium-dependent enzyme that hydrolyses aromatic esters, organophosphates and lactones and can protect the low-density lipoprotein against oxidation. In this study, in vitro inhibition effect of some dihydroxy coumarin compounds namely 6,7-dihydroxy-3-(2-methylphenyl)-2H-chromen-2-one (A), 6,7-dihydroxy-3-(3-methylphenyl)-2H-chromen-2-one (B) and 6,7-dihydroxy-3-(4-methylphenyl)-2H-chromen-2-one (C) on purified PON1 were investigated by using paraoxon as a substrate. PON1 was purified using two-step procedures, namely ammonium sulphate precipitation and Sepharose-4B-l-tyrosine-1-naphthylamine hydrophobic interaction chromatography. The purified enzyme had a specific activity of 11.76?U/mg. The dihydroxy coumarin derivatives of A and B compounds inhibited PON1 enzyme activity in a noncompetitive inhibition manner with K i of 0.0080?±?0.256 and 0.0003?±?0.018?mM values, respectively. C compound exerted an uncompetitive inhibition of PON1 enzyme activity with K i of 0.0010?±?0.173?mM. Moreover, dihydroxy coumarin derivatives of A, B and C compounds were effective inhibitors on purified human serum PON1 activity with IC50 of 0.012, 0.022 and 0.003?mM values, respectively. IC50 value of unsubstituted 6,7 dihydroxy coumarin was found as 0.178?mM. The present study has demonstrated that PON1 activity is very highly sensitive to studied coumarin derivatives.  相似文献   

10.
A homology-based model of the 5-HT2A receptor was produced utilizing an activated form of the bovine rhodopsin (Rh) crystal structure [1,2]. In silico activation of the Rh structure was accomplished by isomerization of the 11-cis-retinal (1) chromophore, followed by constrained molecular dynamics to relax the resultant high energy structure. The activated form of Rh was then used as a structural template for development of a human 5-HT2A receptor model. Both the 5-HT2A receptor and Rh are members of the G-protein coupled receptor (GPCR) super-family. The resulting homology model of the receptor was then used for docking studies of compounds representing a cross-section of structural classes that activate the 5-HT2A receptor, including ergolines, tryptamines, and amphetamines. The ligand/receptor complexes that ensued were refined and the final binding orientations were observed to be compatible with much of the data acquired through both diversified ligand design and site directed mutagenesis.  相似文献   

11.
Fourteen coumarin-derived compounds modified at the C3 carbon of coumarin with an α,β-unsaturated ketone were synthesized. These compounds may be designated as chalcocoumarins (3-cinnamoyl-2H-chromen-2-ones). Both chalcones and coumarins are recognized scaffolds in medicinal chemistry, showing diverse biological and pharmacological properties among which neuroprotective activities and multiple enzyme inhibition, including mitochondrial enzyme systems, stand out. The evaluation of monoamine oxidase B (MAO-B) inhibitors has aroused considerable interest as therapeutic agents for neurodegenerative diseases such as Parkinson’s. Of the fourteen chalcocumarins evaluated here against MAO-B, ChC4 showed the strongest activity in vitro, with IC50 = 0.76 ± 0.08 µM. Computational docking, molecular dynamics and MM/GBSA studies, confirm that ChC4 binds very stably to the active rMAO-B site, explaining the experimental inhibition data.  相似文献   

12.
In the present study experimentally determined ligand selectivity of three methylated buspirone analogues (denoted as MM2, MM5 and P55) towards 5-HT1A and 5-HT2A serotonin receptors was theoretically investigated on a molecular level. The relationships between the ligand structure and 5-HT1A and 5-HT2A receptor affinities were studied and the results were found to be in agreement with the available site-directed mutagenesis and binding affinity data. Molecular dynamics (MD) simulations of ligand-receptor complexes were performed for each investigated analogue, docked twice into the central cavity of 5-HT1A/5-HT2A, each time in a different orientation. Present results were compared with our previous theoretical results, obtained for buspirone and its non-methylated analogues. It was found that due to the presence of the methyl group in the piperazine ring the ligand position alters and the structure of the ligand-receptor complex is modified. Further, the positions of derivatives with pyrimidinyl aromatic moiety and quinolinyl moiety are significantly different at the 5-HT2A receptor. Thus, methylation of such derivatives alters the 3D structures of ligand-receptor complexes in different ways. The ligand-induced changes of the receptor structures were also analysed. The obtained results suggest, that helical domains of both receptors have different dynamical behaviour. Moreover, both location and topography of putative binding sites for buspirone analogues are different at 5-HT1A and 5-HT2A receptors.  相似文献   

13.
Coumarins are the important class of naturally occurring heterocyclic compounds. Activities like antioxidant, antibacterial, anti‐inflammatory, and anticancer have been reported for coumarin derivatives. Present work details the synthesis of substituted coumarin‐4‐pyrrolones as well as coumarin‐4‐acetyl amino acids and their DHODH inhibitory activity, which is a dual target for malaria and cancer. Coumarin‐4‐acetic acids ( 2a – c ) were coupled with different methyl esters of α‐amino acids ( 3 ) giving rise to corresponding coumarin‐4‐acetyl amino acid methyl esters ( 4a – o ), which on hydrolysis under basic condition underwent cyclization forming substituted dihydropyrrole‐2‐ones ( 5a – i ), dihydroindolizine‐3‐ones ( 5j – l ), and dihydropyrrolizin‐3‐one ( 5m – o ). Acidic hydrolysis of the compounds ( 4a – o ) yielded corresponding coumarin‐4‐acetyl amino acids ( 6a – f ). The docking study was performed with the protein 4IGH (obtained from PDB) using Surflex–Dock module. The newly synthesized compounds were tested for DHODH inhibitory activity using Brequinar as the standard. Compound 6b showed remarkable inhibition compared with the standard, and the other compounds with terminal COOH showed moderate inhibition.  相似文献   

14.
Vortioxetine is a multimodal antidepressant drug that affects several brain neurochemicals and has the potential to induce various pharmacological effects on the central nervous system. Therefore, we investigated the centrally mediated analgesic efficacy of this drug and the mechanisms underlying this effect. Analgesic activity of vortioxetine (5, 10 and 20 mg/kg, p.o.) was examined by tail-clip, tail-immersion and hot-plate tests. Motor performance of animals was evaluated using Rota-rod device. Time course measurements (30–180 min) showed that vortioxetine (10 and 20 mg/kg) administrations significantly increased the response latency, percent maximum possible effect and area under the curve values in all of the nociceptive tests. These data pointed out the analgesic effect of vortioxetine on central pathways carrying acute thermal and mechanical nociceptive stimuli. Vortioxetine did not alter the motor coordination of mice indicating that the analgesic activity of this drug was specific. In mechanistic studies, pre-treatments with p-chlorophenylalanine (serotonin-synthesis inhibitor), NAN-190 (serotonin 5-HT1A receptor antagonist), α-methyl-para-tyrosine (catecholamine-synthesis inhibitor), phentolamine (non-selective α-adrenoceptor blocker), and naloxone (non-selective opioid receptor blocker) antagonised the vortioxetine-induced analgesia. Obtained findings indicated that vortioxetine-induced analgesia is mediated by 5-HT1A serotonergic, α-adrenergic and opioidergic receptors, and contributions of central serotonergic and catecholaminergic neurotransmissions are critical for this effect.  相似文献   

15.
Ten derivatives of N1 substituted/unsubstituted 5-(4-chlorophenyl)-3-(2-thienyl) pyrazoline were synthesised from chalcone-like intermediate and substituted phenyl hydrazines, hydrazine hydrate, and semi/thiosemicarbazide. The chemical structure of compounds was confirmed by means of IR, 1H NMR, mass spectroscopy, and elemental analysis. The antidepressant and anticonvulsant activities were investigated by Porsolt’s behavioural despair test (forced swimming) and maximum electroshock seizure test, respectively. Rota-Rod test was performed to assess any probable changes in motor coordination induced by the test compounds. Four compounds (IId, IIg, IIi, and IIj) exhibited good activity profile against depression and docking studies confirmed their consensual interaction with monoamine oxidase A. In addition, compounds IIc and IIe showed protection against MES-induced seizures.  相似文献   

16.
A series of novel multi-substituted coumarin derivatives were synthesized, spectroscopically characterized, and evaluated for their antioxidant activity, soybean lipoxygenase (LOX) inhibitory ability, their influence on cell viability in immortalized human keratinocytes (HaCaT), and cytotoxicity in adenocarcinomic human alveolar basal epithelial cells (A549) and human melanoma (A375) cells, in vitro. Coumarin analogues 4a–4f, bearing a hydroxyl group at position 5 of the coumarin scaffold and halogen substituents at the 3-phenyl ring, were the most promising ABTS•+ scavengers. 6,8-Dibromo-3-(4-hydroxyphenyl)-4-methyl-chromen-2-one (4k) and 6-bromo-3-(4,5-diacetyloxyphenyl)-4-methyl-chromen-2-one (3m) exhibited significant lipid peroxidation inhibitory activity (IC50 36.9 and 37.1 μM). In the DCF-DA assay, the 4′-fluoro-substituted compound 3f (100%), and the 6-bromo substituted compounds 3i (80.9%) and 4i (100%) presented the highest activity. The 3′-fluoro-substituted coumarins 3e and 4e, along with 3-(4-acetyloxyphenyl)-6,8-dibromo-4-methyl-chromen-2-one (3k), were the most potent lipoxygenase (LOX) inhibitors (IC50 11.4, 4.1, and 8.7 μM, respectively) while displaying remarkable hydroxyl radical scavenging ability, 85.2%, 100%, and 92.9%, respectively. In silico docking studies of compounds 4e and 3k, revealed that they present allosteric interactions with the enzyme. The majority of the analogues (100 μΜ) did not affect the cell viability of HaCaT cells, though several compounds presented over 60% cytotoxicity in A549 or A375 cells. Finally, the human oral absorption (%HOA) and plasma protein binding (%PPB) properties of the synthesized coumarins were also estimated using biomimetic chromatography, and all compounds presented high %HOA (>99%) and %PPB (60–97%) values.  相似文献   

17.
Considering the importance of benzothiazepine pharmacophore, an attempt was carried out to synthesize novel 1,5-benzothiazepine derivatives using polyethylene glycol-400 (PEG-400)-mediated pathways. Initially, different chalcones were synthesized and then subjected to a cyclization step with benzothiazepine in the presence of bleaching clay and PEG-400. PEG-400-mediated synthesis resulted in a yield of more than 95% in less than an hour of reaction time. Synthesized compounds 2a–2j were investigated for their in vitro cytotoxic activity. Moreover, the same compounds were subjected to systematic in silico screening for the identification of target proteins such as human adenosine kinase, glycogen synthase kinase-3β, and human mitogen-activated protein kinase 1. The compounds showed promising results in cytotoxicity assays; among the tested compounds, 2c showed the most potent cytotoxic activity in the liver cancer cell line Hep G-2, with an IC50 of 3.29 ± 0.15 µM, whereas the standard drug IC50 was 4.68 ± 0.17 µM. In the prostate cancer cell line DU-145, the compounds displayed IC50 ranges of 15.42 ± 0.16 to 41.34 ± 0.12 µM, while the standard drug had an IC50 of 21.96 ± 0.15 µM. In terms of structural insights, the halogenated phenyl substitution on the second position of benzothiazepine was found to significantly improve the biological activity. This characteristic feature is supported by the binding patterns on the selected target proteins in docking simulations. In this study, 1,5-benzothiazepines have been identified as potential anticancer agents which can be further exploited for the development of more potent derivatives.  相似文献   

18.
Atherosclerotic cardiovascular disease is the leading cause of death in developed countries. Therefore, there is an increasing interest in developing new potent and safe antiplatelet agents. Coumarins are a family of polyphenolic compounds with several pharmacological activities, including platelet aggregation inhibition. However, their antiplatelet mechanism of action needs to be further elucidated. The aim of this study is to provide insight into the biochemical mechanisms involved in this activity, as well as to establish a structure–activity relationship for these compounds. With this purpose, the antiplatelet aggregation activities of coumarin, esculetin and esculin were determined in vitro in human whole blood and platelet-rich plasma, to set the potential interference with the arachidonic acid cascade. Here, the platelet COX activity was evaluated from 0.75 mM to 6.5 mM concentration by measuring the levels of metabolites derived from its activity (MDA and TXB2), together with colorimetric assays performed with the pure recombinant enzyme. Our results evidenced that the coumarin aglycones present the greatest antiplatelet activity at 5 mM and 6.5 mM on aggregometry experiments and inhibiting MDA levels.  相似文献   

19.
Regulating insulin and leptin levels using a protein tyrosine phosphatase 1B (PTP1B) inhibitor is an attractive strategy to treat diabetes and obesity. Glycyrrhetinic acid (GA), a triterpenoid, may weakly inhibit this enzyme. Nonetheless, semisynthetic derivatives of GA have not been developed as PTP1B inhibitors to date. Herein we describe the synthesis and evaluation of two series of indole- and N-phenylpyrazole-GA derivatives (4a–f and 5a–f). We measured their inhibitory activity and enzyme kinetics against PTP1B using p-nitrophenylphosphate (pNPP) assay. GA derivatives bearing substituted indoles or N-phenylpyrazoles fused to their A-ring showed a 50% inhibitory concentration for PTP1B in a range from 2.5 to 10.1 µM. The trifluoromethyl derivative of indole-GA (4f) exhibited non-competitive inhibition of PTP1B as well as higher potency (IC50 = 2.5 µM) than that of positive controls ursolic acid (IC50 = 5.6 µM), claramine (IC50 = 13.7 µM) and suramin (IC50 = 4.1 µM). Finally, docking and molecular dynamics simulations provided the theoretical basis for the favorable activity of the designed compounds.  相似文献   

20.
A series of 51 5-HT2A partial agonistic arylethylamines (primary or benzylamines) from different structural classes (indoles, methoxybenzenes, quinazolinediones) was investigated by fragment regression analysis (FRA), docking and 3D-QSAR approaches. The data, pEC50 values and intrinsic activities (Emax) on rat arteries, show high variability of pEC50 from 4 to 10 and of Emax from 15 to 70%. FRA indicates which substructures affect potency or intrinsic activity. The high contribution of halogens in para position of phenethylamines to pEC50 points to a specific hydrophobic pocket. Other results suggest the significance of hydrogen bonds of the aryl moiety for activation and the contrary effect of benzyl groups on affinity (increasing) and intrinsic activity (decreasing). Results from fragment regression and data on all available mutants were considered to derive a common binding site at the rat 5-HT2A receptor. After generation and MD simulations of a receptor model based on the β2-adrenoceptor structure, typical derivatives were docked, leading to the suggestion of common interactions, e.g., with serines in TM3 and TM5 and with a cluster of aromatic amino acids in TM5 and TM6. The whole series was aligned by docking and minimization of the complexes. The pEC50 values correlate well with Sybyl docking energies and hydrophobicity of the aryl moieties. With this alignment, CoMFA and CoMSIA approaches based on a training set of 36 and a test set of 15 compounds were performed. The correlation of pEC50 with steric, electrostatic, hydrophobic and H-bond acceptor fields resulted in sufficient fit (q 2: 0.75–0.8, r 2: 0.92–0.95) and predictive power (r pred2: 0.85–0.88). The important interaction regions largely reflect the patterns provided by the putative binding site. In particular, the fit of the aryl moieties and benzyl substituents to two hydrophobic pockets is evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号