首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) is a positron emission tomography (PET) tracer useful for tumor proliferation assessment for a number of cancers, particularly in the cases of brain, lung, and breast tumors. At present [18F], FLT is commonly prepared by means of the nucleophilic radiofluorination of 3-N-Boc-5′-O-DMT-3′-O-nosyl thymidine precursor in the presence of a phase-transfer catalyst, followed by an acidic hydrolysis. To achieve high radiochemical yield, relatively large amounts of precursor (20–40 mg) are commonly used, leading to difficulties during purification steps, especially if a solid-phase extraction (SPE) approach is attempted. The present study describes an efficient method for [18F]FLT synthesis, employing tetrabutyl ammonium tosylate as a non-basic phase-transfer catalyst, with a greatly reduced amount of precursor employed. With a reduction of the precursor amount contributing to lower amounts of synthesis by-products in the reaction mixture, an SPE purification procedure using only two commercially available cartridges—OASIS HLB 6cc and Sep-Pak Alumina N Plus Light—has been developed for use on the GE TRACERlab FX N Pro synthesis module. [18F]FLT was obtained in radiochemical yield of 16 ± 2% (decay-corrected) and radiochemical purity >99% with synthesis time not exceeding 55 min. The product was formulated in 16 mL of normal saline with 5% ethanol (v/v). The amounts of chemical impurities and residual solvents were within the limits established by European Pharmacopoeia. The procedure described compares favorably with previously reported methods due to simplified automation, cheaper and more accessible consumables, and a significant reduction in the consumption of an expensive precursor.  相似文献   

2.
Introduction: Benzodiazepines, including temazepam are described as TSPO antagonists. In fact, TSPO was initially described as a peripheral benzodiazepine receptor (PBR) with a secondary binding site for diazepam. TSPO is a potential imaging target of neuroinflammation because there is an amplification of the expression of this receptor. Objectives: Herein, we developed a novel fluorinated benzodiazepine ligand, [18F]Fluoroethyltemazepam ([18F]F-FETEM), for positron emission tomography (PET) imaging of translocator protein (18 kDa). Methods: [18F]F-FETEM was radiolabelled with an automated synthesizer via a one-pot procedure. We conducted a [18F]F-aliphatic nucleophilic substitution of a tosylated precursor followed by purification on C18 and Alumina N SPE cartridges. Quality control tests was also carried out. Results: We obtained 2.0–3.0% decay-uncorrected radiochemical activity yield (3.7% decay-corrected) within the whole synthesis time about 33 min. The radiochemical purity of [18F]F-FETEM was over 90% by TLC analysis. Conclusions: This automated procedure may be used as basis for future production of [18F]F-FETEM for preclinical PET imaging studies.  相似文献   

3.
(1) Background: [18F]Flumazenil 1 ([18F]FMZ) is an established positron emission tomography (PET) radiotracer for the imaging of the gamma-aminobutyric acid (GABA) receptor subtype, GABAA in the brain. The production of [18F]FMZ 1 for its clinical use has proven to be challenging, requiring harsh radiochemical conditions, while affording low radiochemical yields. Fully characterized, new methods for the improved production of [18F]FMZ 1 are needed. (2) Methods: We investigate the use of late-stage copper-mediated radiofluorination of aryl stannanes to improve the production of [18F]FMZ 1 that is suitable for clinical use. Mass spectrometry was used to identify the chemical by-products that were produced under the reaction conditions. (3) Results: The radiosynthesis of [18F]FMZ 1 was fully automated using the iPhase FlexLab radiochemistry module, affording a 22.2 ± 2.7% (n = 5) decay-corrected yield after 80 min. [18F]FMZ 1 was obtained with a high radiochemical purity (>98%) and molar activity (247.9 ± 25.9 GBq/µmol). (4) Conclusions: The copper-mediated radiofluorination of the stannyl precursor is an effective strategy for the production of clinically suitable [18F]FMZ 1.  相似文献   

4.
Aromatic radiofluorination of the diaryliodonium tosylate precursor with [(18)F]fluoride ions has been applied successfully to access [(18)F]flumazenil in high radiochemical yields of 67.2 ± 2.7% (decay corrected). The stability and reactivity of the diaryliodonium tosylate precursor plays a key role in increasing the production of (18)F-labelled molecules under the fluorine-18 labelling condition. Various conditions were explored for the preparation of [(18)F]flumazenil from different diaryliodonium tosylate precursors. Optimum incorporation of [(18)F]fluoride ions in the 4-methylphenyl-mazenil iodonium tosylate precursor (5f) was achieved at 150 °C for 5 min by utilizing 4 mg of the precursor, K(2.2.2)/K(2)CO(3) complex, and the radical scavenger in N,N-dimethylformamide. This approach was extended to a viable method for use in automated synthesis with a radiochemical yield of 63.5 ± 3.2% (decay corrected, n = 26) within 60.0 ± 1.1 min. [(18)F]Flumazenil was isolated by preparative HPLC after the reaction was conducted under improved conditions and exhibited sufficient specific activity of 370-450 GBq μmol(-1), with a radiochemical purity of >99%, which will be suitable for human PET studies.  相似文献   

5.
1,2,3-triazoles are versatile building blocks with growing interest in medicinal chemistry. For this reason, organic chemistry focuses on the development of new synthetic pathways to obtain 1,2,3-triazole derivatives, especially with pyridine moieties. In this work, a novel series of 1,5-disubstituted-1,2,3-triazoles functionalized with pyrimidine nucleobases were prepared via 1,3-dipolar cycloaddition reaction in a regioselective manner for the first time. The N1-propargyl nucleobases, used as an alkyne intermediate, were obtained in high yields (87–92%) with a new two-step procedure that selectively led to the monoalkylated compounds. Then, FeCl3 was employed as an efficient Lewis acid catalyst for 1,3-dipolar cycloaddition between different aryl and benzyl azides and the N1-propargyl nucleobases previously synthesized. This new protocol allows the synthesis of a series of new 1,2,3-triazole derivatives with good to excellent yields (82–92%). The ADME (Absorption, Distribution, Metabolism, and Excretion) analysis showed good pharmacokinetic properties and no violations of Lipinsky’s rules, suggesting an appropriate drug likeness for these new compounds. Molecular docking simulations, conducted on different targets, revealed that two of these new hybrids could be potential ligands for viral and bacterial protein receptors such as human norovirus capsid protein, SARS-CoV-2 NSP13 helicase, and metallo-β-lactamase.  相似文献   

6.
Positron emission tomography (PET) imaging of activated T-cells with N-(4-[18F]fluorobenzoyl)-interleukin-2 ([18F]FB-IL-2) may be a promising tool for patient management to aid in the assessment of clinical responses to immune therapeutics. Unfortunately, existing radiosynthetic methods are very low yielding due to complex and time-consuming chemical processes. Herein, we report an improved method for the synthesis of [18F]FB-IL-2, which reduces synthesis time and improves radiochemical yield. With this optimized approach, [18F]FB-IL-2 was prepared with a non-decay-corrected radiochemical yield of 3.8 ± 0.7% from [18F]fluoride, 3.8 times higher than previously reported methods. In vitro experiments showed that the radiotracer was stable with good radiochemical purity (>95%), confirmed its identity and showed preferential binding to activated mouse peripheral blood mononuclear cells. Dynamic PET imaging and ex vivo biodistribution studies in naïve Balb/c mice showed organ distribution and kinetics comparable to earlier published data on [18F]FB-IL-2. Significant improvements in the radiochemical manufacture of [18F]FB-IL-2 facilitates access to this promising PET imaging radiopharmaceutical, which may, in turn, provide useful insights into different tumour phenotypes and a greater understanding of the cellular nature and differential immune microenvironments that are critical to understand and develop new treatments for cancers.  相似文献   

7.
Background: The somatostatin receptors 1–5 are overexpressed on neuroendocrine neoplasms and, as such, represent a favorable target for molecular imaging. This study investigates the potential of [18F]AlF-NOTA-[1-Nal3]-Octreotide and compares it in vivo to DOTA- and NOTA-[1-Nal3]-Octreotide radiolabeled with gallium-68. Methods: DOTA- and NOTA-NOC were radiolabeled with gallium-68 and NOTA-NOC with [18F]AlF. Biodistributions of the three radioligands were evaluated in AR42J xenografted mice at 1 h p.i and for [18F]AlF at 3 h p.i. Preclinical PET/CT was applied to confirm the general uptake pattern. Results: Gallium-68 was incorporated into DOTA- and NOTA-NOC in yields and radiochemical purities greater than 96.5%. NOTA-NOC was radiolabeled with [18F]AlF in yields of 38 ± 8% and radiochemical purity above 99% after purification. The biodistribution in tumor-bearing mice showed a high uptake in tumors of 26.4 ± 10.8 %ID/g for [68Ga]Ga-DOTA-NOC and 25.7 ± 5.8 %ID/g for [68Ga]Ga-NOTA-NOC. Additionally, [18F]AlF-NOTA-NOC exhibited a tumor uptake of 37.3 ± 10.5 %ID/g for [18F]AlF-NOTA-NOC, which further increased to 42.1 ± 5.3 %ID/g at 3 h p.i. Conclusions: The high tumor uptake of all radioligands was observed. However, [18F]AlF-NOTA-NOC surpassed the other clinically well-established radiotracers in vivo, especially at 3 h p.i. The tumor-to-blood and -liver ratios increased significantly over three hours for [18F]AlF-NOTA-NOC, making it possible to detect liver metastases. Therefore, [18F]AlF demonstrates promise as a surrogate pseudo-radiometal to gallium-68.  相似文献   

8.
Pretargeted imaging can be used to visualize and quantify slow-accumulating targeting vectors with short-lived radionuclides such as fluorine-18 – the most popular clinically applied Positron Emission Tomography (PET) radionuclide. Pretargeting results in higher target-to-background ratios compared to conventional imaging approaches using long-lived radionuclides. Currently, the tetrazine ligation is the most popular bioorthogonal reaction for pretargeted imaging, but a direct 18F-labeling strategy for highly reactive tetrazines, which would be highly beneficial if not essential for clinical translation, has thus far not been reported. In this work, a simple, scalable and reliable direct 18F-labeling procedure has been developed. We initially studied the applicability of different leaving groups and labeling methods to develop this procedure. The copper-mediated 18F-labeling exploiting stannane precursors showed the most promising results. This approach was then successfully applied to a set of tetrazines, including highly reactive H-tetrazines, suitable for pretargeted PET imaging. The labeling succeeded in radiochemical yields (RCYs) of up to approx. 25%. The new procedure was then applied to develop a pretargeting tetrazine-based imaging agent. The tracer was synthesized in a satisfactory RCY of ca. 10%, with a molar activity of 134 ± 22 GBq μmol−1 and a radiochemical purity of >99%. Further evaluation showed that the tracer displayed favorable characteristics (target-to-background ratios and clearance) that may qualify it for future clinical translation.

A simple, scalable and reliable direct 18F-labeling procedure has been developed and applied to obtain a pretargeting tetrazine-based imaging agent with favorable in vivo characteristics.  相似文献   

9.
The Cu(I)-catalyzed, 1,3-dipolar cycloaddition reaction was applied successfully to the synthesis of small, F-18-labeled biomolecules, and an optimal condition was developed for one-pot, two-step reaction without any interim purifications. This technique was employed in various F-18-labeled, 1,2,3-triazole syntheses with high radiochemical yield.  相似文献   

10.
Aziridines can undergo a range of ring-opening reactions with nucleophiles. The regio- and stereochemistry of the products depend on the substituents on the aziridine. Aziridine ring-opening reactions have rarely been used in radiosynthesis. Herein we report the ring opening of activated aziridine-2-carboxylates with [18F]fluoride. The aziridine was activated for nucleophilic attack by substitution of various groups on the aziridine nitrogen atom. Fluorine-18 radiolabelling was followed by ester hydrolysis and removal of the activation group. Totally regioselective ring opening and subsequent deprotection was achieved with tert-butyloxycarbonyl- and carboxybenzyl-activated aziridines to give α-[18F]fluoro-β-alanine in good radiochemical yield.  相似文献   

11.
Two new silicon-based prosthetic groups, derived from 3-[ethoxybis(1-methylethyl)silyl]propanamine, have been prepared in good yields. These silicon groups bearing an acid or an azide group were coupled to a model tripeptide (Leu-Gly-Gly) either through a classical amide bond formation or through “click chemistry” via the Huisgen cycloaddition. The radiolabelling with fluorine-18 by substitution of the ethoxy group at silicon has been carried out with success in 51-54% decay corrected radiochemical yields. Radiolabelled peptides were easily prepared by direct 18F-fluorination of the silicon-bearing tripeptide or by coupling the peptide with a radiolabelled silicon-based prosthetic group. Their stabilities in physiological medium were studied and proved poor.  相似文献   

12.
Since many molecules bearing quinoline-5,8-dione or fused 1,4-quinone moieties possess a wide spectrum of biological activities, efficient methods for incorporation of fluorine-18 (F-18) into quinoline-5,8-diones have received considerable attention in positron emission tomography (PET) molecular imaging studies. In this paper, we describe an efficient synthetic route for the regioselective preparation of fluoropropyl-substituted quinoline-5,8-diones on the C3, C4, and C6 positions by tert-alcohol media fluorination, followed by oxidative demethylation of the corresponding dimethoxy compound using N-bromosuccinimide (NBS) in the presence of catalytic amounts of sulfuric acid. Moreover, F-18 labeled [18F]fluoropropylquinoline-5,8-diones [18F]21-23 were prepared from the corresponding mesylate precursors by a method of rapid and efficient one-pot, two-step reactions: radiofluorination using TBA [18F]F generated under no-carrier-added (NCA) conditions; oxidative demethylation, resulting in a 45% radiochemical yield of [18F]21-23 (decay-corrected) with a total synthesis time (including HPLC purification) of 75 min and high radiochemical purity (>99%), as well as high specific activity (∼230 GBq/μmol).  相似文献   

13.
Due to favourable in vivo characteristics, its high specificity and the longer half-life of 18F (109.8 min) allowing for remote-site delivery, O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET) has gained increased importance for molecular imaging of cerebral tumors. Consequently, the development of simple and efficient production strategies for [18F]FET could be an important step to further improve the cost-effective availability of [18F]FET in the clinical environment. In the present study [18F]FET was synthesized via direct nucleophilic synthesis using an earlier developed chiral precursor, the NiII complex of an alkylated (S)-tyrosine Schiff base, Ni-(S)-BPB-(S)-Tyr-OCH2CH2OTs. The purification method has been developed via solid phase extraction thereby omitting cumbersome HPLC purification. The suggested SPE purification using combination of reverse phase and strong cation exchange cartridges provided [18F]FET in high chemical, radiochemical and enantiomeric purity and 35 % radiochemical yield (decay-corrected, 45 min synthesis time). The method was successfully automated using a commercially available synthesis module, Scintomics Hotboxone. Based on the current results, the proposed production route appears to be well suited for transfer into an automated cassette-type radiosynthesizers without using HPLC.  相似文献   

14.
(S)-4-Chloro-2-fluorophenylalanine and (S)-(α-methy)-4-chloro-2-fluorophenylalanine were synthesized and labeled with no carrier added (n.c.a.) fluorine-18 through a radiochemical synthesis relying on the highly enantioselective reaction between 4-chloro-2-[18F]fluorobenzyl iodide and the lithium enolate of (2S)-1-(tert-butyloxycarbonyl)-2-(tert-butyl)-3-methyl-1,3-imidazolidine-4-one for (S)-4-chloro-2-[18F]fluorophenylalanine and (2S,5S)-1-(tert-butyloxycarbonyl)-2-(tert-butyl)-3,5-dimethyl-1,3-imidazolidine-4-one for (S)-(α-methyl) -4-chloro-2-[18F] fluorophenylalanine. Quantities of about 20–25 mCi were obtained at the end of sy nthesi s, ready for injection after hydrolysis and high performance liquid chromatography (HPLC) purification, with a radiochemical yield of 17%–20% corrected to the end of bombardment after a total synthesis time of 90–105 min from [18F] fluoride. The enantiomeric excesses were shown to be 97% or more for both molecules without chiral separation and the radiochemical and chemical purities were 98% or better.  相似文献   

15.
2-[(18)F]Fluoro-L-phenylalanine and 2-[(18)F]fluoro-L-tyrosine have been developed as promising radiopharmaceuticals for molecular imaging using positron emission tomography (PET). However, the lack of a convenient radiosynthetic pathway has limited their practical use. In this work a new three-step nucleophilic synthesis of these compounds starting from [(18)F]fluoride is described. Corresponding precursors (1a and 1b) were (18)F-fluorinated by isotopic exchange, followed by the removal of an activating formyl group with Rh(PPh(3))(3)Cl and subsequent hydrolysis of protecting groups in acidic medium. All reactions were carried out using both conventional and microwave heating. Conventional heated reactions yielded the desired products 2-[(18)F]Fphe and 2-[(18)F]Ftyr in 43% and 49% whereas radiochemical yields of 34% and 43%, respectively, were obtained when they were heated by microwaves. Under optimized conditions the enantiomeric purity was ≥94% for both radiopharmaceuticals.  相似文献   

16.
Fluorine-18 labeled 6-fluoro-6-deoxy-D-fructose (6-[18F]FDF) targets the fructose-preferred facilitative hexose transporter GLUT5, which is expressed predominantly in brain microglia and activated in response to inflammatory stimuli. We hypothesize that 6-[18F]FDF will specifically image microglia following neuroinflammatory insult. 6-[18F]FDF and, for comparison, [18F]FDG were evaluated in unilateral intra-striatal lipopolysaccharide (LPS)-injected male and female rats (50 µg/animal) by longitudinal dynamic PET imaging in vivo. In LPS-injected rats, increased accumulation of 6-[18F]FDF was observed at 48 h post-LPS injection, with plateaued uptake (60–120 min) that was significantly higher in the ipsilateral vs. contralateral striatum (0.985 ± 0.047 and 0.819 ± 0.033 SUV, respectively; p = 0.002, n = 4M/3F). The ipsilateral–contralateral difference in striatal 6-[18F]FDF uptake expressed as binding potential (BPSRTM) peaked at 48 h (0.19 ± 0.11) and was significantly decreased at one and two weeks. In contrast, increased [18F]FDG uptake in the ipsilateral striatum was highest at one week post-LPS injection (BPSRTM = 0.25 ± 0.06, n = 4M). Iba-1 and GFAP immunohistochemistry confirmed LPS-induced activation of microglia and astrocytes, respectively, in ipsilateral striatum. This proof-of-concept study revealed an early response of 6-[18F]FDF to neuroinflammatory stimuli in rat brain. 6-[18F]FDF represents a potential PET radiotracer for imaging microglial GLUT5 density in brain with applications in neuroinflammatory and neurodegenerative diseases.  相似文献   

17.
It was shown that 1,2,3-triazole derivatives are formed in the reaction of tetra-nitrodibenzo-18-crown-6 with excess hydrazine or ethylhydrazine in DMSO, while the reaction with phenylhydrazine leads to isomeric products of nucleophilic substitution of the nitro group.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 256–257, February, 1988.  相似文献   

18.
Vitamin E, a natural antioxidant, is of interest to scientists, health care pundits and faddists; its nutritional and biomedical attributes may be validated, anecdotal or fantasy. Vitamin E is a mixture of tocopherols (TPs) and tocotrienols (T-3s), each class having four substitutional isomers (α-, β-, γ-, δ-). Vitamin E analogues attain only low concentrations in most tissues, necessitating exacting invasive techniques for analytical research. Quantitative positron emission tomography (PET) with an F-18-labeled molecular probe would expedite access to Vitamin E’s biodistributions and pharmacokinetics via non-invasive temporal imaging. (R)-6-(3-[18F]Fluoropropoxy)-2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-chromane ([18F]F-γ-T-3) was prepared for this purpose. [18F]F-γ-T-3 was synthesized from γ-T-3 in two steps: (i) 1,3-di-O-tosylpropane was introduced at C6-O to form TsO-γ-T-3, and (ii) reaction of this tosylate with [18F]fluoride in DMF/K222. Non-radioactive F-γ-T-3 was synthesized by reaction of γ-T-3 with 3-fluoropropyl methanesulfonate. [18F]F-γ-T-3 biodistribution in a murine tumor model was imaged using a small-animal PET scanner. F-γ-T-3 was prepared in 61% chemical yield. [18F]F-γ-T-3 was synthesized in acceptable radiochemical yield (RCY 12%) with high radiochemical purity (>99% RCP) in 45 min. Preliminary F-18 PET images in mice showed upper abdominal accumulation with evidence of renal clearance, only low concentrations in the thorax (lung/heart) and head, and rapid clearance from blood. [18F]F-γ-T-3 shows promise as an F-18 PET tracer for detailed in vivo studies of Vitamin E. The labeling procedure provides acceptable RCY, high RCP and pertinence to all eight Vitamin E analogues.  相似文献   

19.

The goal of this work was to present two high-performance liquid chromatography (HPLC) method that could be applied for the determination of the total radioactive purity of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET). The separation of [18F]fluoride ions, [18F]FET and [18F]FET intermediate was accomplished on LiChrosper RP-18, 250?×?4 mm, 5 µm (Merck) analytical column. For mobile phase 10 mM potassium dihydrogen phosphate buffer at pH7 (A) and acetonitrile (B) was used: 0–2 min: 15% B; 2–12 min: 85% B; 12–15 min: 15% B, respectively. Analysis of [18F]FDG was performed using LiChrosper 100 NH2, 250?×?4.5 mm, 5 µm (Merck) analytical column. The initial mobile phase composition was 10 mM KH2PO4 buffer (pH7) and acetonitrile (15:85, v/v) and the acetonitrile ratio was decreased to 15% at 2 min after the sample injection and held for 5 min. Complete elution of [18F]fluoride ions from stationary phases could be achieved by adding 10 mg/mL K[19F]F to radioactive samples in a ratio 1:1 during the sample preparation. Recovery of [18F]fluoride ions ranged from 99.5 to 100.6%. The validation of the developed methods showed good results for linearity (r2?=?0.9981–0.9996), specificity (RS?=?3.7–10.2), repeatability (%Area RSD%?=?1.2–4.3%) and limit of quantitation (LOQ?=?1.6–4.5 kBq). During the cross-validation similar radiochemical purity values were obtained by the novel HPLC methods and thin layer chromatography performed according to the recommendations of the Ph. Eur. monographs.

  相似文献   

20.
《Analytical letters》2012,45(7):1197-1205
A fast and sensitive ultra-performance liquid chromatography-tandem mass spectrometric (UPLC/MS/MS) method was developed and validated for determination of the residual levels of Kryptofix 2.2.2 (K222) in [18F]-labeled radiopharmaceuticals. The analytical time was only 3 min, and the injection volume was 5 μL. An electrospray ionization source was used in the positive mode (ESI+) for UPLC/MS/MS. The analytical measurements were performed in the multiple reaction monitoring (MRM) mode. The calibration curve at the spiked concentrations of 2–500 ng/mL for K222 showed good linearity. The intra- and inter-day precisions were not more than 5%. The accuracy satisfied the requirement of quality control analysis, the recoveries were found to be 80–120%. This method was successfully applied to detect the residue of K222 in [18F]-fluorodeoxyglucose [(18F)FDG], [18F]-fluoromisonizole[(18F)FMISO], 3′-deoxy-3′-[18F]-fluorothymidine [(18F)FLT], and two new [18F]-labeled radiopharmaceuticals 4-[-(2-[18F]fluoroethoxy) methyl]-1-[2-(2-methyl-5-nitro-1H- imidazol-1-yl) ethyl]-1H-1,2,3-triazole (named as 18F-BNU-1) and 4-[-(2-[18F] fluoroethoxy) methyl]-1-[2-(2-nitro-1H-imidazol-1-yl) ethyl]-1H-1,2,3-triazole (named as 18F-BNU-2) produced in our lab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号