首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aurora-A kinase plays a central role in mitosis, where aberrant activation contributes to cancer by promoting cell cycle progression, genomic instability, epithelial-mesenchymal transition, and cancer stemness. Aurora-A kinase inhibitors have shown encouraging results in clinical trials but have not gained Food and Drug Administration (FDA) approval. An innovative computational workflow named Docking-based Comparative Intermolecular Contacts Analysis (dbCICA) was applied—aiming to identify novel Aurora-A kinase inhibitors—using seventy-nine reported Aurora-A kinase inhibitors to specify the best possible docking settings needed to fit into the active-site binding pocket of Aurora-A kinase crystal structure, in a process that only potent ligands contact critical binding-site spots, distinct from those occupied by less-active ligands. Optimal dbCICA models were transformed into two corresponding pharmacophores. The optimal one, in capturing active hits and discarding inactive ones, validated by receiver operating characteristic analysis, was used as a virtual in-silico search query for screening new molecules from the National Cancer Institute database. A fluorescence resonance energy transfer (FRET)-based assay was used to assess the activity of captured molecules and five promising Aurora-A kinase inhibitors were identified. The activity was next validated using a cell culture anti-proliferative assay (MTT) and revealed a most potent lead 85(NCI 14040) molecule after 72 h of incubation, scoring IC50 values of 3.5–11.0 μM against PANC1 (pancreas), PC-3 (prostate), T-47D and MDA-MB-231 (breast)cancer cells, and showing favorable safety profiles (27.5 μM IC50 on fibroblasts). Our results provide new clues for further development of Aurora-A kinase inhibitors as anticancer molecules.  相似文献   

2.
3.
Accumulating evidence indicates that mitotic protein kinases are involved in metastatic migration as well as tumorigenesis. Protein kinases and cytoskeletal proteins play a role in the efficient release of metastatic cells from a tumor mass in the tumor microenvironment, in addition to playing roles in mitosis. Mitotic protein kinases, including Polo-like kinase 1 (PLK1) and Aurora kinases, have been shown to be involved in metastasis in addition to cell proliferation and tumorigenesis, depending on the phosphorylation status and cellular context. Although the genetic programs underlying mitosis and metastasis are different, the same protein kinases and cytoskeletal proteins can participate in both mitosis and cell migration/invasion, resulting in migratory tumors. Cytoskeletal remodeling supports several cellular events, including cell division, movement, and migration. Thus, understanding the contributions of cytoskeletal proteins to the processes of cell division and metastatic motility is crucial for developing efficient therapeutic tools to treat cancer metastases. Here, we identify mitotic kinases that function in cancer metastasis as well as tumorigenesis. Several mitotic kinases, namely, PLK1, Aurora kinases, Rho-associated protein kinase 1, and integrin-linked kinase, are considered in this review, as an understanding of the shared machineries between mitosis and metastasis could be helpful for developing new strategies to treat cancer.Subject terms: Oncogenes, Mitosis, Metastasis  相似文献   

4.
This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 μM compared to sorafenib (0.0782 μM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 μM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.  相似文献   

5.
Two series of olmutinib derivatives containing an acrylamide moiety were designed and synthesized, and their IC50 values against cancer cell lines (A549, H1975, NCI-H460, LO2, and MCF-7) were evaluated. Most of the compounds exhibited moderate cytotoxic activity against the five cancer cell lines. The most promising compound, H10, showed not only excellent activity against EGFR kinase but also positive biological activity against PI3K kinase. The structure–activity relationship (SAR) suggested that the introduction of dimethylamine scaffolds with smaller spatial structures was more favorable for antitumor activity. Additionally, the substitution of different acrylamide side chains had different effects on the activity of compounds. Generally, compounds H7 and H10 were confirmed as promising antitumor agents.  相似文献   

6.
Protein kinase C (PKC) is an intracellular effector of the inositol phosphate-mediated signal transduction pathway. Evidence is emerging that certain general anaesthetics can influence the activity of PKC by interacting with the regulatory domain of the enzyme, and targeting PKC kinase domain is considered as a strategy to modulate the anaesthetic effects. Here, an integrated method was used to perform virtual screening against a large library of natural compounds for the discovery of new and potent PKC modulators. A number of hits were identified and their inhibitory activity against PKC kinase domain was measured by using a standard kinase assay protocol. Three and five compounds were determined to have high and moderate activities with IC50 values at nanomolar and micromolar levels, respectively. These compounds can be considered as promising lead molecular entities to develop efficacious anaesthetic modulators. Structural examination revealed a variety of nonbonded interactions such as hydrogen bonds, cation-π contacts, and hydrophobic forces across the complex interface of PKC with the identified compounds. This study helps to establish an integrative approach to rational kinase inhibitor discovery by efficiently exploiting various existing natural products.  相似文献   

7.
Protein kinase plays a vital role in regulating signal‐transduction pathways and its simple and quick detection is highly desirable because traditional kinase assays typically rely on a time‐consuming kinase‐phosphorylation process (ca. 1 h). Herein, we report a new and rapid fluorescence‐based sensing platform for probing the activity of protein kinase that is based on the super‐quenching capacity of graphene oxide (GO) nanosheets and specific recognition of the aptameric peptide (FITC‐IP20). On the GO/peptide platform, the fluorescence quenching of FITC‐IP20 that is adsorbed onto GO can be restored by selective binding of active protein kinase to the aptameric peptide, thereby resulting in the fast switch‐on detection of kinase activity (ca. 15 min). The feasibility of this method has been demonstrated by the sensitive measurement of the activity of cAMP‐dependent protein kinase (PKA), with a detection limit of 0.053 mU μL?1. This assay technique was also successfully applied to the detection of kinase activation in cell lysate.  相似文献   

8.
A new class of 4‐oxo‐4H‐1‐benzopyran derivatives were synthesized and their antiproliferative activity examined against a panel of three human cancer cell lines, that is, breast carcinoma (MDA‐MB‐468), ovarian adenocarcinoma (SK‐OV‐3), and colorectal adenocarcinoma (HT‐29). Two compounds, that is, 3‐hexyl‐7,8‐dihydroxy‐4‐oxo‐4H‐1‐benzopyran and (E)‐ethyl 3‐(7‐methoxy‐4‐oxo‐4H‐1‐benzopyran‐3‐yl)acrylate were found to be potent against all three cancer cell lines studied at 50 μM concentration. Also, the inhibitory potency of the compounds was evaluated against active Src kinase. A few of these compounds exhibited modest Src kinase inhibitory activity (IC50 = 52–57 μM). Structure‐activity relationship studies with respect to the nature and position of substituents on the lead compounds could be further exploited for the design and development of more potent antiproliferative agents and/or Src kinase inhibitors.  相似文献   

9.
The growing risk of antimicrobial resistance besides the continuous increase in the number of cancer patients represents a great threat to global health, which requires intensified efforts to discover new bioactive compounds to use as antimicrobial and anticancer agents. Thus, a new set of pyridothienopyrimidine derivatives 2a,b–9a,b was synthesized via cyclization reactions of 3-amino-thieno[2,3-b]pyridine-2-carboxamides 1a,b with different reagents. All new compounds were evaluated against five bacterial and five fungal strains. Many of the target compounds showed significant antimicrobial activity. In addition, the new derivatives were further subjected to cytotoxicity evaluation against HepG-2 and MCF-7 cancer cell lines. The most potent cytotoxic candidates (3a, 4a, 5a, 6b, 8b and 9b) were examined as EGFR kinase inhibitors. Molecular docking study was also performed to explore the binding modes of these derivatives at the active site of EGFR-PK. Compounds 3a, 5a and 9b displayed broad spectrum antimicrobial activity with MIC ranges of 4–16 µg/mL and potent cytotoxic activity with IC50 ranges of 1.17–2.79 µM. In addition, they provided suppressing activity against EGFR with IC50 ranges of 7.27–17.29 nM, higher than that of erlotinib, IC50 = 27.01 nM.  相似文献   

10.
Protein kinases are general and significant regulators in the cell signaling pathway, and it is still greatly desired to achieve simple and quick kinase detection. Herein, we develop a simple and sensitive photoelectrochemical strategy for the detection of protein kinase activity based on the bond between phosphorylated peptide and phosphorylated graphite-like carbon nitride (P-g-C3N4) conjugates triggered by Zr4+ ion coordination. Under optimal conditions, the increased photocurrent is proportional to the protein kinase A (PKA) concentration ranging from 0.05 to 50 U/mL with a detection limit of 0.077 U/mL. Moreover, this photoelectrochemical assay can be also applied to quantitative analysis of kinase inhibition. The results indicated that the IC50 value (inhibitor concentration producing 50% inhibitor) for ellagic acid was 9.1 μM. Moreover, the developed method is further applied to detect PKA activity in real samples, which contains serum from healthy person and gastric cancer patients and breast tissue from healthy person and breast cancer patients. Therefore, the established protocol provides a new and simple tool for assay of kinase activity and its inhibitors with low cost and high sensitivity.  相似文献   

11.
Kinase-related apoptosis-inducing kinase 2 (DRAK2) is a serine/threonine kinase and belongs to the death-associated protein kinase DPAK family, which is responsible for induction of apoptosis in many cell types. Thus, DRAK2 is regarded as a promising target for treatment of autoimmune diseases. To investigate the binding between DRAK2 and indirubin inhibitors and design potent inhibitors, a three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking were performed. Comparative Molecular Similarity Indices Analysis (CoMSIA) was developed using 33 molecules having pIC50 ranging from 8.523 to 5.000 (IC50 in nM). The best CoMSIA model gave a significant coefficient of determination (R2?=?0.93), as well as a (leave-one-out cross-validation coefficient Q2 of 0.81. The predictive ability of this model was evaluated by external validation using a test set of eight compounds and yielded a predicted coefficient of determination R2test of 0.94. The contour maps could provide structural features to improve inhibitory activity. Good consistency between contour maps and molecular docking strongly suggests that the molecular modeling is reliable. Based on these satisfactory results, we designed several new DRAK2 inhibitors and their inhibitory activities were predicted using different models, which are developed on different training and test sets. Additionally, these newly designed inhibitors showed promising results in the preliminary in silico ADMET evaluations compared to the best inhibitor from the studied dataset. This study could be useful in lead identification and optimization for early drug discovery of DRAK2 inhibitors.  相似文献   

12.
13.
Protein phosphorylation is one of the most basic mechanisms for regulating and controlling protein biological activity and function, and it is also a very important posttranslational modification process. Protein phosphorylation participates in and regulates many life activities such as signal transduction, gene expression, cell cycle, and so on. In this paper, we propose a method for the determination of the protein phosphorylation combining capillary electrophoresis (CE) with ATP analog labeling technique. We synthesized two new ATP analogs (ATP-NB and ATP-TATD-NB) functionalized by norbornene. Using Abl kinase as a model, we established a method for the determination of the kinase activity in solution and lysate by CE with laser-induced fluorescence detection (CE-LIF). This method was used to evaluate the efficiencies of kinase inhibitors. The IC50 values obtained are basically consistent with the reports. By D–A reaction (inverse electron demand Diels–Alder reaction) to label TZ-BODIPY fluorescence, we also realized the phosphorylation fluorescence detection of substrate peptide. Then, we used fluorescence confocal microscopy imaging technology to study the phosphorylation of proteins in vivo by the D–A reaction of ATP-NB and TZ-BODIPY. Our preliminary results documented that the combination of CE-LIF with analog ATP-NB labeling technique is an effective strategy for the determination of the protein phosphorylation and the kinase activity and for screening of kinase inhibitors. The D–A reaction of ATP-NB and TZ-BODIPY also laid the foundation for the subsequent in situ study of protein phosphorylation.  相似文献   

14.
Abstract

A series of new pyrido-cyclopenta[1,2-b]indole derivatives were synthesized via Knoevenagel reaction and followed by reflux with dimethylformamide dimethyl acetal. Their structures were investigated by spectral techniques and elemental analysis. In vitro antibacterial assessment against seven selected microorganisms evidenced that the compounds with halogen substituent have strong inhibitory action than that of the reference drugs. The antioxidant results were apparent that the compounds 5b, 5c, and 6c manifested explicit activity when compared with Butylhydroxyanisole and Vitamin-C. Cytotoxic activity analysis toward HeLa and MCF-7 cell lines was also assessed. Analogs 6c (IC50 values 15.1?μM and 18.6?μM) and 6d (IC50 values 17.4?μM and 20.7?μM) illustrated the interesting cytotoxicity activity. Molecular docking studies against p38 MAP kinase displayed a potential binding affinity with the receptor. Furthermore, in silico pharmacokinetic studies articulated the drug-likeness nature of the target compounds.  相似文献   

15.
Particulate matter 2.5 (PM2.5) exposure can trigger adverse health outcomes in the human skin, such as skin aging, wrinkles, pigment spots, and atopic dermatitis. PM2.5 is associated with mitochondrial damage and the generation of reactive oxygen species (ROS). Hesperidin is a bioflavonoid that exhibits antioxidant and anti-inflammatory properties. This study aimed to determine the mechanism underlying the protective effect of hesperidin on human HaCaT keratinocytes against PM2.5-induced mitochondrial damage, cell cycle arrest, and cellular senescence. Human HaCaT keratinocytes were pre-treated with hesperidin and then treated with PM2.5. Hesperidin attenuated PM2.5-induced mitochondrial and DNA damage, G0/G1 cell cycle arrest, and SA-βGal activity, the protein levels of cell cycle regulators, and matrix metalloproteinases (MMPs). Moreover, treatment with a specific c-Jun N-terminal kinase (JNK) inhibitor, SP600125, along with hesperidin markedly restored PM2.5-induced cell cycle arrest and cellular senescence. In addition, hesperidin significantly reduced the activation of MMPs, including MMP-1, MMP-2, and MMP-9, by inhibiting the activation of activator protein 1. In conclusion, hesperidin ameliorates PM2.5-induced mitochondrial damage, cell cycle arrest, and cellular senescence in human HaCaT keratinocytes via the ROS/JNK pathway.  相似文献   

16.
In order to report pharmacological characterization of marine snail (Hexaplex trunculus) hepatopancreatic phospholipase A2 (mSDPLA2), we have talked for the first time the antimicrobial activity against different pathogenic bacterial strains, anti-chlamydial activity as well as its cytotoxic activity against McCoy cell lines. mSDPLA2, showed a high level of activity towards Gram-positive bacteria as Staphylococcus aureus and Staphylococcus epidermidis. Whereas Gram-negative bacteria, unfortunately, exhibited a higher resistance, mSDPLA2 was also found to have a strong cytotoxic activity, causing significant morphological alterations of the McCoy cell lines surfaces and to be a hinder to the proliferation. Moreover, mSDPLA2 proved to have a very potent anti-chlamydial activity. Over 95?% inhibition of chlamydial inclusions were obtained at a concentration of 10???g/ml of mSDPLA2 after 24?h postinfection. Interestingly, at a concentration of 10???g/ml of mSDPLA2, the proliferation of McCoy cells was not affected. Approximately 50?% inhibition of cell growth was obtained with a concentration of 37???g/mL of mSDPLA2. mSDPLA2 could be considered as an excellent candidate for the development of a new anti-infective agent. This enzyme showed significant antimicrobial activities.  相似文献   

17.
We describe a MALDI‐TOF mass‐spectrometry‐based method that is rapid and versatile for the characterization of protein kinases and their inhibitors. We have designed new kinase substrates by the modification of common synthetic peptides, such as kemptide (LRRALS G), CaMKII substrate (KRQQS FDLF), erktide (ATGPLS PGPFGRR), abltide (EAIY AAPFAKKK), srctide (AEEEIY GEFEAKKKK), neurogranin (AAAKIQAS FRGHMARKK), and casein kinase I (CKI) substrate (RRKDLHDDEEDEAMS ITA). There are two fundamental points on which the proposed method is based to improve the mass‐spectrometric response: 1) mass tag technology by N‐derivatization through stable isotope labeling and 2) C‐terminal conjugation with tryptophanylarginine (WR). It was suggested that C‐terminal conjugation with the WR moiety enhances the ionization potency of these new substrates 1.5–13.7 times as much as those of the original peptides. We demonstrated, by using modified abltide (Ac‐EAIY AAPFAKKKWR‐NH2), that WR conjugation at the C‐terminus in combination with stable‐isotope labeling at the N‐terminus allowed the quantitative assay of recombinant c‐Abl kinase in the presence of adenosine 5′‐triphosphate (ATP; KM,ATP=18.6 μM and Vmax=642 pmol min?1 μg?1). The present protocol made a simple and reliable inhibition assay of recombinant c‐Abl kinase by imatinib possible (IC50(recombinant)=291 nM ; STI571, Gleevec; Novartis Pharma). Moreover, it was also demonstrated that this ATP noncompetitive inhibitor differentiates between two conformers of c‐Abl kinases: the phosphorylated active and dephosphorylated inactive forms (IC50(active form)=1049 nM and IC50(inactive form)=54 nM ). The merit of this approach is evident because the present protocol can be applied to the direct monitoring of the activities of living cell kinases by using cancer‐cell lines, such as mouse B16 melanoma cells and human lung cancer K562 cells. A multiple‐kinase assay that uses K562 cell lysate in the presence of seven new synthetic substrates made high‐throughput inhibitor profiling possible. It should be emphasized that this radioactive isotope‐free quantitative kinase assay will greatly accelerate the discovery of a new generation of potential kinase inhibitors that exhibit highly selective or unique inhibitory profiles.  相似文献   

18.
Imidazo[1,2-b]pyridazine compounds are a new class of promising lead molecules to which we have incorporated polar nitro and amino moieties to increase the scope of their biological activity. Two of these substituted 3-nitro-6-amino-imidazo[1,2-b]pyridazine compounds (5c and 5h) showed potent acetylcholinesterase (AChE) inhibitory activity (IC50 40–50 nM), which we have previously reported. In this study, we wanted to test the biological efficacy of these compounds. Cytotoxicity assays showed that compound 5h mediated greater cell death with over 43% of cells dead at 100 μM and activation of caspase 3-mediated apoptosis. On the other hand, compound 5c mediated a dose-dependent decrease in cell proliferation. Both compounds showed cell cycle arrest in the G0/G1 phase and reduced cellular ATP levels leading to activation of adenosine monophosphate-activated protein kinase (AMPK) and enhanced mitochondrial oxidative stress. It has to be noted that all these effects were observed at doses beyond 10 μM, 200-fold above the IC50 for AChE inhibition. Both compounds also inhibited bacterial lipopolysaccharide-mediated cyclooxygenase-2 and nitric oxide release in primary rat microglial cells. These results suggested that the substituted imidazo (1,2-b) pyridazine compounds, which have potent AChE inhibitory activity, were also capable of antiproliferative, anti-migratory, and anti-inflammatory effects at higher doses.  相似文献   

19.
A new set of tetraethylene glycol tethered ciprofloxacin–isatin hybrids 5a–l with greater lipophilicity than the parent ciprofloxacin was designed, synthesized, and screened for their in vitro antimycobacterial activity against drug‐sensitive Mycobacterium tuberculosis (MTB) H37Rv and multidrug‐resistant MTB strains as well as toxicity in a mammalian VERO cell line. The preliminary results revealed that all hybrids exhibited considerable activity against MTB H37Rv with minimum inhibitory concentration in a range of 0.205–14.186 μg/mL. Especially, hybrid 5a with low cytotoxicity displayed highest activity against both drug‐sensitive MTB H37Rv and two clinically isolates multidrug‐resistant MTB strains, suggesting that it may serve as a new and promising candidate for further study.  相似文献   

20.
Previously, we reported the in vitro growth inhibitory effect of diarylpentanoid BP-M345 on human cancer cells. Nevertheless, at that time, the cellular mechanism through which BP-M345 exerts its growth inhibitory effect remained to be explored. In the present work, we report its mechanism of action on cancer cells. The compound exhibits a potent tumor growth inhibitory activity with high selectivity index. Mechanistically, it induces perturbation of the spindles through microtubule instability. As a consequence, treated cells exhibit irreversible defects in chromosome congression during mitosis, which induce a prolonged spindle assembly checkpoint-dependent mitotic arrest, followed by massive apoptosis, as revealed by live cell imaging. Collectively, the results indicate that the diarylpentanoid BP-M345 exerts its antiproliferative activity by inhibiting mitosis through microtubule perturbation and causing cancer cell death, thereby highlighting its potential as antitumor agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号