首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-enhanced Raman scattering (SERS) was discovered three decades ago and has gone through a tortuous pathway to develop into a powerful diagnostic technique. Recently, the lack of substrate, surface and molecular generalities of SERS has been circumvented to a large extent by devising and utilizing various nanostructures by many groups including ours. This article aims to present our recent approaches of utilizing the borrowing SERS activity strategy mainly through constructing two types of nanostructures. The first nanostructure is chemically synthesized Au nanoparticles coated with ultra-thin shells (ca. one to ten atomic layers) of various transition metals, e.g., Pt, Pd, Ni and Co, respectively. Boosted by the long-range effect of the enhanced electromagnetic (EM) field generated by the highly SERS-active Au core, the originally low surface enhancement of the transition metal can be substantially improved giving total enhancement factors up to 10(4)-10(5). It allows us to obtain the Raman spectra of surface water, having small Raman cross-section, on several transition metals for the first time. To expand the surface generality of SERS, tip-enhanced Raman spectroscopy (TERS) has been employed. With TERS, a nanogap can be formed controllably between an atomically flat metal surface and the tip with an optimized shape, within which the enhanced EM field from the tip can be coupled (borrowed) effectively. Therefore, one can obtain surface Raman signals (TERS signals) from adsorbed species at Au(110), Au(111) and, more importantly, Pt(l10) surfaces. The enhancement factor achieved on these single crystal surfaces can be up to 106, especially with a very high spatial resolution down to about 14 nm. To fully accomplish the borrowing strategy from different nanostructures and to explain the experimental observations, a three-dimensional finite-difference time-domain method was used to calculate and evaluate the local EM field on the core-shell nanoparticle surfaces and the TERS tips. Finally, prospects and further developments of this valuable strategy are briefly discussed with emphasis on the emerging experimental methodologies.  相似文献   

2.
谢泳  李筱琴  任斌  田中群 《电化学》2001,7(1):66-70
利用沉积在粗糙金电极上的过渡金属超薄层电极技术 ,我们获得了氢及一氧化碳在Rh和Pt表面上吸附的拉曼信号 ,并对两者之间的相互作用进行了分析 ..我们还进行了二氧化碳在这两种金属表面的还原行为的初步研究 ,以及对不同方式获得的一氧化碳吸附拉曼信号的特点进行了分析 .  相似文献   

3.
《Vibrational Spectroscopy》2004,34(2):269-272
The adsorption structure and mechanism of 4,4′-bipyridine (BiPy) on gold nanoparticle surfaces has been investigated by means of surface-enhanced Raman scattering (SERS). The aromatic ring of BiPy appeared to assume a perpendicular orientation with respect to the gold surface from the presence of the ν(CH) band at ∼3060 cm−1. The SERS intensities of several vibrational modes of BiPy on Au were found to vary as the bulk concentration. The SERS intensities for BiPy on Au could be ascribed to both the electromagnetic (EM) and charge transfer (CT) enhancement mechanism.  相似文献   

4.
Raman spectroscopy on transition metals   总被引:2,自引:0,他引:2  
Surface-enhanced Raman spectroscopy (SERS) has developed into one of the most important tools in analytical and surface sciences since its discovery in the mid-1970s. Recent work on the SERS of transition metals concluded that transition metals, other than Cu, Ag, and Au, can also generate surface enhancement as high as 4 orders of magnitude. The present article gives an overview of recent progresses in the field of Raman spectroscopy on transition metals, including experimental, theory, and applications. Experimental considerations of how to optimize the experimental conditions and calculate the surface enhancement factor are discussed first, followed by a very brief introduction of preparation of SERS-active transition metal substrates, including massive transition metal surfaces, aluminum-supported transition metal electrodes, and pure transition metal nanoparticle assembled electrodes. The advantages of using SERS in investigating surface bonding and reaction are illustrated for the adsorption and reaction of benzene on Pt and Rh electrodes. The electromagnetic enhancement, mainly lightning-rod effect, plays an essential role in the SERS of transition metals, and that the charge-transfer effect is also operative in some specific metal–molecule systems. An outlook for the field of Raman spectroscopy of transition metals is given in the last section, including the preparation of well-ordered or well-defined nanostructures, and core-shell nanoparticles for investigating species with extremely weak SERS signals, as well as some new emerging techniques, including tip-enhanced Raman spectroscopy and an in situ measuring technique. Figure Electric-field enhancement of a SERS-active Rh surface decorated with small nanohemispheres  相似文献   

5.
We utilized the strategy of 'borrowing SERS activity', by chemically coating several atomic layers of a Pt-group metal on highly SERS-active Au nanoparticles, to obtain the first SERS (also Raman) spectra of surface water on Pt and Pd metals, and propose conceptual models for water adsorbed on Pt and Pd metal surfaces.  相似文献   

6.
We have identified empirically a relationship between the surface morphology of small individual aggregates (<100 Au nanoparticles) and surface-enhanced Raman scattering (SERS) enhancement. We have found that multilayer aggregates generated greater SERS enhancement than aggregates limited to two-dimensional (2D) or one-dimensional structures, independent of the number of particles. SERS intensity was measured using the 730 cm(-1) vibrational mode of the adsorbed adenine molecule on 75 nm Au particles, at an excitation wavelength of 632.8 nm. To gain insight into these relationships and its mechanism, we developed a qualitative model that considers the collections of interacting Au nanoparticles of an individual aggregate as a continuous single entity that retains its salient features. We found the dimensions of the modeled surface features to be comparable with those found in rough metal surfaces, known to sustain surface plasmon resonance and generate strong SERS enhancement. Among the aggregates that we have characterized, a three 75 nm nanoparticle system was the smallest to generate strong SERS enhancement. However, we also identified single individual Au nanoparticles as SERS active at the same wavelength, but with a diameter twice in size. For example, we observed a symmetric SERS-active particle of 180 nm in diameter. Such individual nanoparticles generated SERS enhancement on the same order of magnitude as the small monolayer Au aggregates, an intensity value significantly stronger than predicted in recent theoretical studies. We also found that an aspect of our model that relates the dimensions of its features to SERS enhancement is also applicable to single individual Au particles. We conclude that the size of the nanoparticle itself, or the size of a protrusion of an irregularly shaped single Au particle, will contribute to SERS enhancement provided that its dimensions satisfy the conditions for plasmon resonance. In addition, by considering the ratio of the generated intensities of typical 2D Au aggregates to the enhancement of individual SERS-active particles, a value of approximately 2 is determined. Its moderate value suggests that it is not the aggregation effect that is responsible for much of the observed SERS enhancement but the surface region associated with the SERS-active site.  相似文献   

7.
The aim of this work is to further improve the molecular generality and substrate generality of SERS (i.e., to fully optimize the SERS activity of transition-metal electrodes). We utilized a strategy of borrowing high SERS activity from the Au core based on Au-core Pt-shell (Au@Pt) nanoparticle film electrodes, which can be simply and routinely prepared. The shell thickness from about one to five monolayers of Pt atoms can be well controlled by adjusting the ratio of the number of Au seeds to Pt(IV) ions in the solution. The SERS experimental results of carbon monoxide adsorption indicate that the enhancement factor for the Au@Pt nanoparticle film electrodes is more than 2 orders of magnitude larger than that of electrochemically roughened Pt electrodes. The practical virtues of the present film electrodes for obtaining rich and high-quality vibrational information for diverse adsorbates on transition metals are pointed out and briefly illustrated with systems of CO, hydrogen, and benzene adsorbed on Pt. We believe that the electrochemical applications of SERS will be broadened with this strategy, in particular, for extracting detailed vibrational information for adsorbates at transition-metal electrode interfaces.  相似文献   

8.
Certain colloidal metals such as.silver (Ag), gold (Au) and copper, (Cu), when properly or assembled, display remarkable enhancement effect to the Raman scattering cross section of adsorbed molecules. This surface-enhanced Raman scattering (SERS) phenomenon has found wide applications in the study of interfacial chemical processes and is a potentially non-invasive technique in molecule-specific analysis. However, the SERS activity of metal colloids depends sensitively on both the synthetic method and the aggregation and assembly procedure, making it difficult to develop SERS into a reliable and quantitative analytical technique. To solve this problem, one needs to develop a substrate with a well-defined adsorption area and SERS activity. One approach to achieve this goal is to assemble a monolayer of uniform colloidal metals onto a well-defined secondary substrate. Here we report our effort in assembling monolayers of uniform Au nanoparticles on the well-defined optical-inactive microparticles in a layer-by-layer (LbL) manner and the use of such assembly as SERS-active substrate.  相似文献   

9.
表面增强拉曼散射增强机理的部分研究进展   总被引:6,自引:0,他引:6  
概述了我们在表面增强拉曼散射(SERS)化学增强机理方面的一些研究工作, 介绍了分子-金属的成键作用和光诱导电荷转移对Raman谱峰强度与电位关系的影响, 基于光电场下纳米粒子光学性质的物理增强机理, 并针对SERS机理研究中尚存在的基本问题提出了建立SERS统一理论的展望.  相似文献   

10.
A new route has been developed to design plasmonic pollen grain-like nanostructures (PGNSs) as surface-enhanced Raman scattering (SERS)-active substrate. The nanostructures consisting of silver (Ag) and gold (Au) nanoparticles along with zinc oxide (ZnO) nanoclusters as spacers were found highly SERS-active. The morphology of PGNSs and those obtained in the intermediate stage along with each elemental evolution has been investigated by a high-resolution field emission scanning electron microscopy. The optical band gaps and crystal structure have been identified by UV-vis absorption and X-ray powder diffraction (XRD) measurements, respectively. For PGNSs specimen, three distinct absorption bands related to constituent elements Ag, Au, and ZnO were observed, whereas XRD peaks confirmed the existence of Ag, Au, and ZnO within the composition of PGNSs. SERS-activity of PGNSs was confirmed using Rhodamine 6G (R6G) as Raman-active dyes. Air-cooled solid-state laser kits of 532 nm were used as excitation sources in SERS measurements. SERS enhancement factor was estimated for PGNSs specimen and was found as high as 3.5×106. Finite difference time domain analysis was carried out to correlate the electromagnetic (EM) near-field distributions with the experiment results achieved under this investigation. EM near-field distributions at different planes were extracted for s-, p- and 45° of incident polarizations. EM near-field distributions for such nanostructures as well as current density distributions under different circumstances were demonstrated and plausible scenarios were elucidated given SERS enhancements. Such generic fabrication route as well as correlated investigation is not only indispensable to realize the potential of SERS applications but also unveil the underneath plasmonic characteristics of complex SERS-active nanostructures.  相似文献   

11.
用于电化学界面研究的共焦显微拉曼光谱技术(英文)   总被引:1,自引:0,他引:1  
系统地介绍了将共焦显微拉曼光谱系统用于电化学界面研究的方法 ,包括铂电极的粗糙和电化学拉曼电解池的设计 .进行了铂上氢、氧和氯共吸附的拉曼光谱研究 .通过对甲醇氧化过程的现场跟踪 ,提出检测界面区溶液浓度变化和计算溶液 pH值的方法 .实验表明拉曼光谱技术可作为研究实际应用体系的重要工具 .  相似文献   

12.
In the past two decades, practical application of surface Raman spectroscopy had been limited to a few metals, mainly,roughened Ag, Au and Cu, providing great surface enhanced Raman scattering (SERS) enhancement.  相似文献   

13.
Thin metal films with a thickness of one or over one monolayer formed on quasicrystalline surfaces were studied using reflection high-energy electron diffraction, X-ray photoelectron spectroscopy, X-ray photoelectron diffraction and scanning tunneling microscopy. The substrates were the 10f surface of d-Al–Ni–Co and the 5f surface of i-Al–Pd–Mn. The metals deposited were Au, Pt, Ag and In. None of these metals forms any ordered layer by deposition onto clean quasicrystalline surfaces. However, if a submonolayer of In is present atop the 10f surface, an epitaxial layer of multiply-twinned AuAl2 crystals is formed by Au deposition and subsequent annealing. This is also the case for Pt deposition, but not for Ag deposition. Although the surfactant effect of In is also observed in the case of Au deposition on the 5f surface of i-Al–Pd–Mn, the ordered layer formed is a film of Au–Al alloy with icosahedral symmetry. No ordered films are formed by Pt or Ag deposition onto the 5f surface, regardless of the presence of an In-precovered layer. A Sn film monolayer induced by surface diffusion was also studied.  相似文献   

14.
Gold nanoparticles were assembled on gold substrates with the self-assembled monolayer(SAM) of p-minothiophenol(PATP). AFM measurements disclose that gold nanoparticles are scattered over the surface of the substrate with a submonolayer coverage. The Raman signal of the coupling layer, the SAM of PATP, can be well observed. Potential-dependent measurements were performed to study the chemical enhancement in SERS of such a system. Based on the supposition that the direction of charge transfer is from gold nanoparticles to PATP, it is deduced that Herzberg-Teller contribution has ruled in the SERS of such a system.  相似文献   

15.
Surface-enhanced Raman scattering (SERS) of p-aminothiophenol (PATP) molecules adsorbed onto assemblies of Au(core)/Cu(shell) nanoparticles is reported. We compare it with the SERS spectrum of PATP adsorbed onto gold nanoparticles: both the absolute and relative scattered intensities of various bands in the two spectra are very different. The difference in relative intensity can be ascribed to chemical effects; the chemical enhancement ratio of the two substrates is approximately 3-5. A theoretical analysis based on a charge-transfer model is carried out, which yields a consistent result and shows that the difference in chemical enhancement is mainly due to the state densities and Fermi levels of the substrates. The difference in absolute intensity originates from electromagnetic (EM) enhancement. EM enhancement of Au(core)/Cu(shell) nanoparticles is unlike that of single-component gold or copper SERS-active substrates. The core/shell particle size for optimal enhancement is about 20 nm in the case of a 632.8 nm incident laser (the size ratio of the core and shell layers is about 0.6).  相似文献   

16.
A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface‐enhanced Raman spectroscopy (SERS)‐based sensing. As host material for the plasmonically active nanostructures we use dense single‐crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core‐shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core‐shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning‐ and transmission electron microscopy. Optimized core–shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.  相似文献   

17.
《Chemical physics letters》1987,140(1):95-100
Surface-enhanced Raman scattering (SERS) has been observed from pyridine chemisorbed on silver adatoms which had been deposited at submonolayer coverage on a Rh (100) substrate under ultrahigh vacuum. The vibrational frequencies measured are characteristic of pyridine chemically adsorbed on the silver adatoms and an enhancement factor of ≈ 15–65 is calculated from the intensity of the scattering. This enhancement factor is in addition to the factor of four electromagnetic enhancement found for flat metal surfaces and therefore provides unambiguous evidence for the existence and magnitude of chemical enhancement in SERS.  相似文献   

18.
Adsorption of cinchonidine on monometallic Au and bimetallic Pt-Au and Pd-Au thin model films prepared by physical vapor deposition has been investigated with attenuated total reflection infrared (ATR-IR) spectroscopy. On Au the alkaloid forms an adsorbed layer that shows higher stability against desorption than the corresponding adsorption on Pt. In this adsorption layer the intermolecular interactions dominate over metal-adsorbate interactions as indicated by the absence of the spectroscopic features attributed to strongly flat adsorbed species. This behavior is further supported by Density Functional Theory (DFT) calculations indicating that flat and tilted orientations of the quinoline ring have comparable adsorption energy on Au but lower (7-10 kcal/mol) compared to adsorption on Pt (ca. 40 kcal/mol). As a consequence, the creation of a metal surface with isolated chiral sites is prevented by formation of an adsorbed structure formed by intermolecularly bound cinchonidine molecules on Au. While the binding to Pt is due to the formation of sigma-bonds to surface atoms, such aggregates are bound to Au mainly by van der Waals forces. Given this different nature of bonding of cinchonidine to Au and Pt, addition of Au to Pt and Pd films could be used to probe the changes of fractional coverage of the different adsorbed species of cinchonidine on the platinum metals. It is demonstrated that the lowering of the domain size of the platinum group metal by Au can simulate the effect of particle size on the distribution of the surface conformations of the alkaloid on a metal surface.  相似文献   

19.
Understanding interactions between Nafion (perfluorosulfonic acid) and Pt catalysts is important for the development and deployment of proton exchange membrane fuel cells. However, study of such interactions is challenging and Nafion/Pt interfacial structure remains elusive. In this study, adsorption of Nafion ionomer on Au and Pt surfaces was investigated for the first time by in situ surface-enhanced Raman spectroscopy. The study is made possible by the use of uniform SiO(2)@Au core-shell particle arrays which provides very strong enhancement of Raman scattering. The high surface sensitivity offered by this approach yields insightful information on interfacial Nafion structure. Through spectral comparison of several model compounds, vibration assignments of SERS bands were made. The SER spectra suggest the direct interaction of sulfonate group with the metal surfaces, in accord with cyclic voltammetric results. Comparison of present SERS results with previous IR spectra was briefly made.  相似文献   

20.
Surface-enhanced Raman spectroscopy (SERS) substrates have been prepared by depositing Au or Ag on porous GaN (PGaN). The PGaN used as the template for the metal deposition in these studies was generated by a Pt-assisted electroless etching technique. PGaN was chosen as a potential SERS template due to its nanostructured surface and high surface area, two characteristics that are important for SERS substrates. Metal films were deposited either by solution-based electroless deposition or by thermal vacuum evaporation. SERS spectra were recorded at lambda = 752.5 nm for Au films and at lambda = 514.5 nm for Ag films deposited on PGaN. The SERS signal strength across the metal coated PGaN substrates was uniform and was not plagued by "hot" or "cold" spots on the surface, a common problem with other SERS surfaces. The Ag film deposited by electroless deposition had the highest overall SERS response, with an enhancement factor (EF) relative to normal Raman spectroscopy of 10(8). A portion of the increase in EF relative to typical SERS-active substrates can be assigned to the large surface area characteristic of the PGaN-Ag structures, but some of the enhancement is intrinsic and is likely related to the specific morphology of the metal-nanopore composite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号