首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress is one of the potential causes of nervous system disease. Ginseng extract possesses excellent antioxidant activity; however, little research on the function of the ginseng fibrous root. This study aimed to investigate the neuroprotective effects of ginseng fibrous root to alleviate the pathogenesis of Alzheimer’s disease (AD) against oxidative stress. Ginseng fibrous root enzymatic hydrolysate (GFREH) was first prepared by digesting ginseng fibrous roots with alkaline protease. In vitro, the GFREH showed antioxidant activities in free radical scavenging mechanisms. With a cellular model of AD, GFREH inhibited the increase in Ca2+ levels and intracellular ROS content, maintained the balance of mitochondrial membrane potential, and relieved L-glutamic acid-induced neurotoxicity. In vivo, GFREH improved the survival rate of Caenorhabditis elegans (C. elegans) under oxidative stress, upregulated SOD-3 expression, and reduced reactive oxygen species (ROS) content. Therefore, our findings provide evidence for the alleviation effect of GFREH against oxidative stress in neuroprotection, which may accelerate the development of anti-Alzheimer’s drugs and treatments in the future.  相似文献   

2.
Prediabetes (PrDM) is a prodromal stage of diabetes mellitus (DM) with an increasing prevalence worldwide. During DM progression, individuals gradually develop complications in various organs. However, lungs are suggested to be affected later than other organs, such as the eyes, heart or brain. In this work, we studied the effects of PrDM on male Wistar rats’ lungs and whether the regular consumption of white tea (WTEA) for 2 months contributes to the improvement of the antioxidant profile of this tissue, namely through improved activity of the first line defense antioxidant enzymes, the total antioxidant capacity and the damages caused in proteins, lipids and histone H2A. Our data shows that PrDM induced a decrease in lung superoxide dismutase and glutathione peroxidase activities and histone H2A levels and an increase in protein nitration and lipid peroxidation. Remarkably, the regular WTEA intake improved lung antioxidant enzymes activity and total antioxidant capacity and re-established the values of protein nitration, lipid peroxidation and histone H2A. Overall, this is the first time that lung is reported as a major target for PrDM. Moreover, it is also the first report showing that WTEA possesses relevant chemical properties against PrDM-induced lung dysfunction.  相似文献   

3.
Oxidative stress is the result of an imbalance in the redox state in a cell or a tissue. When the production of free radicals, which are physiologically essential for signaling, exceeds the antioxidant capability, pathological outcomes including oxidative damage to macromolecules, aberrant signaling, and inflammation can occur. Down syndrome (DS) and Williams-Beuren syndrome (WBS) are well-known and common genetic conditions with multi-systemic involvement. Their etiology is linked to oxidative stress with important causative genes, such as SOD-1 and NCF-1, respectively, of the diseases being primarily involved in the regulation of the redox state. Early aging, dementia, autoimmunity, and chronic inflammation are some of the main characteristics of these conditions that can be associated with oxidative stress. In recent decades, there has been a growing interest in the possible role of oxidative stress and inflammation in the pathology of these conditions. However, at present, few studies have investigated these correlations. We provide an overview of the current literature concerning the role of oxidative stress and oxidative damage in genetic syndromes with a focus on Down syndrome and WBS. We hope to provide new insights to improve the management of complications related to these diseases.  相似文献   

4.
Pulmonary arterial hypertension (PAH) is clinically characterized by a progressive increase in pulmonary artery pressure, followed by right ventricular hypertrophy and subsequently right heart failure. The underlying mechanism of PAH includes endothelial dysfunction and intimal smooth muscle proliferation. Numerous studies have shown that oxidative stress is critical in the pathophysiology of PAH and involves changes in reactive oxygen species (ROS), reactive nitrogen (RNS), and nitric oxide (NO) signaling pathways. Disrupted ROS and NO signaling pathways cause the proliferation of pulmonary arterial endothelial cells (PAECs) and pulmonary vascular smooth muscle cells (PASMCs), resulting in DNA damage, metabolic abnormalities, and vascular remodeling. Antioxidant treatment has become a main area of research for the treatment of PAH. This review mainly introduces oxidative stress in the pathogenesis of PAH and antioxidative therapies and explains why targeting oxidative stress is a valid strategy for PAH treatment.  相似文献   

5.
Excess reactive oxygen species production and free radical formation can lead to oxidative stress that can damage cells, tissues, and organs. Cellular oxidative stress is defined as the imbalance between ROS production and antioxidants. This imbalance can lead to malfunction or structure modification of major cellular molecules such as lipids, proteins, and DNAs. During oxidative stress conditions, DNA and protein structure modifications can lead to various diseases. Various antioxidant-specific gene expression and signal transduction pathways are activated during oxidative stress to maintain homeostasis and to protect organs from oxidative injury and damage. The liver is more vulnerable to oxidative conditions than other organs. Antioxidants, antioxidant-specific enzymes, and the regulation of the antioxidant responsive element (ARE) genes can act against chronic oxidative stress in the liver. ARE-mediated genes can act as the target site for averting/preventing liver diseases caused by oxidative stress. Identification of these ARE genes as markers will enable the early detection of liver diseases caused by oxidative conditions and help develop new therapeutic interventions. This literature review is focused on antioxidant-specific gene expression upon oxidative stress, the factors responsible for hepatic oxidative stress, liver response to redox signaling, oxidative stress and redox signaling in various liver diseases, and future aspects.  相似文献   

6.
Coptisine is the major bioactive protoberberine alkaloid found in Rhizoma Coptidis. Coptisine reduces inflammatory responses and improves glucose tolerance; nevertheless, whether coptisine has vasoprotective effect in diabetes is not fully characterized. Conduit arteries including aortas and carotid arteries were obtained from male C57BL/6J mice for ex vivo treatment with risk factors (high glucose or tunicamycin) and coptisine. Some arterial rings were obtained from diabetic mice, which were induced by high-fat diet (45% kcal% fat) feeding for 6 weeks combined with a low-dose intraperitoneal injection of streptozotocin (120 mg/kg). Functional studies showed that coptisine protected endothelium-dependent relaxation in aortas against risk factors and from diabetic mice. Coptisine increased phosphorylations of AMPK and eNOS and downregulated the endoplasmic reticulum (ER) stress markers as determined by Western blotting. Coptisine elevates NO bioavailability and decreases reactive oxygen species level. The results indicate that coptisine improves vascular function in diabetes through suppression of ER stress and oxidative stress, implying the therapeutic potential of coptisine to treat diabetic vasculopathy.  相似文献   

7.
Overproduction of superoxide anion (O2.−), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.− to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2S). Termed SOPD-NAC , this persulfide donor reacts specifically with O2.−, decomposing to generate N-acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self-assembling peptide (Bz-CFFE-NH2) to make a superoxide-responsive, persulfide-donating peptide ( SOPD-Pep ). Both SOPD-NAC and SOPD-Pep delivered persulfides/H2S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD-Pep mitigated toxicity induced by phorbol 12-myristate 13-acetate (PMA) more effectively than SOPD-NAC and several control compounds, including common H2S donors.  相似文献   

8.
To further understand the toxic effects of bisphenol Z (BPZ) and bisphenol C (BPC) on aquatic organisms, zebrafish (Danio rerio) were exposed to 0.02 mg/L BPZ and BPC mixed solution in the laboratory for 28 days. The impacts of BPZ and BPC on the activity of the antioxidant enzymes, expression of antioxidant genes, and estrogen receptor genes in zebrafish under different pH conditions were studied. The changes of glutathione peroxidase (GSH-Px), reduced glutathione (GSH), total superoxide dismutase (T-SOD), catalase (POD), and malondialdehyde (MDA) in the zebrafish were detected by spectrophotometry. The mRNA relative expression levels of CAT, GSH, SOD, ERa, and ERb1 in the experimental group were determined by fluorescence quantitative PCR. The results showed that SOD activity and MDA content were inhibited under different pH conditions, and the activities of GSH, GSH-Px, and POD were induced. The activities of POD and GSH induced in the neutral environment were stronger than those in an acidic and alkaline environment. The mRNA relative expression levels of SOD and GSH were consistent with the activities of SOD and GSH. The mRNA relative expression levels of CAT were induced more strongly in the neutral environment than in acidic and alkaline conditions, the mRNA relative expression levels of ERa were induced most weakly in a neutral environment, and the mRNA relative expression levels of ERb1 were inhibited the most in a neutral environment.  相似文献   

9.
Oxidative stress (OS) damage can cause significant injury to cells, which is related to the occurrence and development of many diseases. This pathological process is considered to be the first step to trigger the death of outer retinal neurons, which is related to the pathology of retinal degenerative diseases. Hydrogen sulfide (H2S) has recently received widespread attention as a physiological signal molecule and gas neuromodulator and plays an important role in regulating OS in eyes. In this article, we reviewed the OS responses and regulatory mechanisms of H2S and its donors as endogenous and exogenous regulators in retinal degenerative diseases. Understanding the relevant mechanisms will help to identify the therapeutic potential of H2S in retinal degenerative diseases.  相似文献   

10.
Postovulatory aging of the mammalian oocytes causes deterioration of oocytes through several factors including oxidative stress. Keeping that in mind, we aimed to investigate the potential of a well-known antioxidant, resveratrol (RV), to evaluate the adverse effects of postovulatory aging in porcine oocytes. After in vitro maturation (IVM), a group of (25–30) oocytes (in three replicates) were exposed to 0, 1, 2, and 4 μmol/L of RV, respectively. The results revealed that the first polar body (PB1) extrusion rate of the oocytes significantly increased when the RV concentration reached up to 2 μmol/L (p < 0.05). Considering optimum RV concentration of 2 μmol/L, the potential of RV was evaluated in oocytes aged for 24 and 48 h. We used fluorescence microscopy to detect the relative level of reactive oxygen species (ROS), while GHS contents were measured through the enzymatic method. Our results revealed that aged groups (24 h and 48 h) treated with RV (2 μmol/L) showed higher (p < 0.05) ROS fluorescence intensity than the control group, but lower (p < 0.05) than untreated aged groups. The GSH content in untreated aged groups (24 h and 48 h) was lower (p < 0.05) than RV-treated groups, but both groups showed higher levels than the control. Similarly, the relative expression of the genes involved in antioxidant activity (CAT, GPXGSH-Px, and SOD1) in RV-treated groups was lower (p < 0.05) as compared to the control group but higher than that of untreated aged groups. Moreover, the relative mRNA expression of caspase-3 and Bax in RV-treated groups was higher (p < 0.05) than the control group but lower than untreated groups. Furthermore, the expression of Bcl-2 in the RV-treated group was significantly lower than control but higher than untreated aged groups. Taken together, our findings revealed that the RV can increase the expression of antioxidant genes by decreasing the level of ROS, and its potent antiapoptotic effects resisted against the decline in mitochondrial membrane potential in aged oocytes.  相似文献   

11.
Oxidative stress plays a crucial role in the development of airway diseases. Recently, hydrogen (H2) gas has been explored for its antioxidant properties. This study investigated the role of H2 gas in oxidative stress-induced alveolar and bronchial airway injury, where A549 and NCI-H292 cells were stimulated with hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) in vitro. Results show that time-dependent administration of 2% H2 gas recovered the cells from oxidative stress. Various indicators including reactive oxygen species (ROS), nitric oxide (NO), antioxidant enzymes (catalase, glutathione peroxidase), intracellular calcium, and mitogen-activated protein kinase (MAPK) signaling pathway were examined to analyze the redox profile. The viability of A549 and NCI-H292 cells and the activity of antioxidant enzymes were reduced following induction by H2O2 and LPS but were later recovered using H2 gas. Additionally, the levels of oxidative stress markers, including ROS and NO, were elevated upon induction but were attenuated after treatment with H2 gas. Furthermore, H2 gas suppressed oxidative stress-induced MAPK activation and maintained calcium homeostasis. This study suggests that H2 gas can rescue airway epithelial cells from H2O2 and LPS-induced oxidative stress and may be a potential intervention for airway diseases.  相似文献   

12.
It is well known that oxidative stress induces muscle atrophy, which decreases with the activation of Nrf2/HO-1. Fermented oyster extracts (FO), rich in γ-aminobutyric acid (GABA) and lactate, have shown antioxidative effects. We evaluated whether FO decreased oxidative stress by upregulating Nrf2/HO-1 and whether it decreased NF-κB, leading to decreased IL-6 and TNF-α. Decreased oxidative stress led to the downregulation of Cbl-b ubiquitin ligase, which increased IGF-1 and decreased FoxO3, atrogin1, and Murf1, and eventually decreased muscle atrophy in dexamethasone (Dexa)-induced muscle atrophy animal model. For four weeks, mice were orally administered with FO, GABA, lactate, or GABA+Lactate, and then Dexa was subcutaneously injected for ten days. During Dexa injection period, FO, GABA, lactate, or GABA+Lactate were also administered, and grip strength test and muscle harvesting were performed on the day of the last Dexa injection. We compared the attenuation effect of FO with GABA, lactate, and GABA+lactate treatment. Nrf2 and HO-1 expressions were increased by Dexa but decreased by FO; SOD activity and glutathione levels were decreased by Dexa but increased by FO; NADPH oxidase activity was increased by Dexa but decreased by FO; NF-κB, IL-6, and TNF-α activities were increased by Dexa were decreased by FO; Cbl-b expression was increased by Dexa but restored by FO; IGF-1 expression was decreased by Dexa but increased by FO; FoxO3, Atrogin-1, and MuRF1 expressions were increased by Dexa but decreased by FO. The gastrocnemius thickness and weight were decreased by Dexa but increased by FO. The cross-sectional area of muscle fiber and grip strength were decreased by Dexa but increased by FO. In conclusion, FO decreased Dexa-induced oxidative stress through the upregulation of Nrf2/HO-1. Decreased oxidative stress led to decreased Cbl-b, FoxO3, atrogin1, and MuRF1, which attenuated muscle atrophy.  相似文献   

13.
Increasing evidence indicates that nobiletin (NOB) is a promising neuroprotective agent. Astrocyte activation plays a key role in neurodegenerative disorders. Thus, this study aims to investigate the effects of NOB on astrocyte activation and the potential mechanisms. In this study, astrocytes were exposed to hypoxia injury for 24 h to induce activation in vitro. Glial fibrillary acidic protein (GFAP) was chosen as a marker of astrocyte activation. To evaluate the effects of NOB on the migration of activated astrocytes, we used a scratch wound healing assay and Transwell migration assay. In addition, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential, Nrf2 and HO-1 were measured to investigate the mechanisms of NOB in the activation of astrocytes. We found that NOB alleviated astrocyte activation and decreased GFAP expression during hypoxia. Simultaneously, NOB alleviated the migration of astrocytes induced by hypoxia. With NOB treatment, hypoxia-induced oxidative stress was partially reversed, including reducing the production of ROS and MDA. Furthermore, NOB significantly improved the mitochondrial dysfunction in activated astrocytes. Finally, NOB promoted Nrf2 nuclear translocation and HO-1 expression in response to continuous oxidative damage. Our study indicates, for the first time, that NOB alleviates the activation of astrocytes induced by hypoxia in vitro, in part by ameliorating oxidative stress and mitochondrial dysfunction. This provides new insights into the neuroprotective effects of NOB.  相似文献   

14.
Leghemoglobin (Lb) is an oxygen-binding plant hemoglobin of legume nodules, which participates in the symbiotic nitrogen fixation process. Another way to obtain Lb is its expression in bacteria, yeasts, or other organisms. This is promising for both obtaining Lb in the necessary quantity and scrutinizing it in model systems, e.g., its interaction with reactive oxygen (ROS) and nitrogen (RNS) species. The main goal of the work was to study how Lb expression affected the ability of Escherichia coli cells to tolerate oxidative and nitrosative stress. The bacterium E. coli with the embedded gene of soybean leghemoglobin a contains this protein in an active oxygenated state. The interaction of the expressed Lb with oxidative and nitrosative stress inducers (nitrosoglutathione, tert-butyl hydroperoxide, and benzylviologen) was studied by enzymatic methods and spectrophotometry. Lb formed NO complexes with heme-nitrosylLb or nonheme iron-dinitrosyl iron complexes (DNICs). The formation of Lb-bound DNICs was also detected by low-temperature electron paramagnetic resonance spectroscopy. Lb displayed peroxidase activity and catalyzed the reduction of organic peroxides. Despite this, E. coli-synthesized Lb were more sensitive to stress inducers. This might be due to the energy demand required by the Lb synthesis, as an alien protein consumes bacterial resources and thereby decreases adaptive potential of E. coli.  相似文献   

15.
Wheat (Triticum aestivum L.) is the oldest known food crop, and many studies have reported that wheat shoots (i.e., wheatgrass) possess anti-cancer, anti-inflammatory, and antioxidant activities. However, the potentially ameliorative effect of wheat shoots on hepatotoxicity caused by high doses of N-acetyl-para-aminophenol (acetaminophen, APAP) has yet to be reported. C57BL/6 mice received daily oral TAE (100 or 200 mg/kg), positive control (silymarin 100 mg/kg), or negative control (saline vehicle) treatments for 7 days prior to intraperitoneal APAP injection. Histological, serum (ELISA), Western blotting, and quantitative PCR analyses of excised liver tissues were then performed. Pre-treatment with TAE (100 or 200 mg/kg) ameliorated APAP-induced pathological damage (i.e., hepatotoxic lesions), reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and also ameliorated APAP-induced increases in oxidative stress, thereby inhibiting oxidative liver damage and reducing the expression of inflammatory cytokines. In addition, TAE pre-treatment inhibited the expression of Cytochrome P4502E1 (CYP2E1), which is a key enzyme in the onset of APAP-induced hepatotoxicity, suppressed the expression of the target proteins regulated by the antioxidant enzyme Nrf2, and suppressed hepatocyte apoptosis. These findings suggest that TAE is an attractive therapeutic candidate that exhibits potential hepatoprotective activity by inhibiting oxidative stress, inflammation, apoptosis, and liver damage.  相似文献   

16.
一氧化氮对水稻叶片中由镧引起的氧化胁迫的缓解作用   总被引:3,自引:0,他引:3  
研究了一氧化氮(NO)对水稻中由稀土元素镧诱导的抗氧化活性的影响. 结果表明, 在100 μmol·L-1 氯化镧处理的水稻幼苗中加入10 μmol·L-1 NO供体硝普钠(sodium nitroprusside, SNP), 可以显著抑制镧从水稻根部向叶片的转运. 镧处理显著降低超氧化物歧化酶(superoxide dismutase, SOD)活性和还原型谷胱甘肽(reduced glutathione, GSH)含量, 促进叶片过氧化氢(H2O2)含量上升. 而NO则可明显阻断镧引起的这些效应, 缓解镧引起的氧化胁迫, 即NO缓解了高浓度镧对水稻的毒性.  相似文献   

17.
Oxidative stress (OS) is a metabolic dysfunction mediated by the imbalance between the biochemical processes leading to elevated production of reactive oxygen species (ROS) and the antioxidant defense system of the body. It has a ubiquitous role in the development of numerous noncommunicable maladies including cardiovascular diseases, cancers, neurodegenerative diseases, aging and respiratory diseases. Diseases associated with metabolic dysfunction may be influenced by changes in the redox balance. Lately, there has been increasing awareness and evidence that diabetes mellitus (DM), particularly type 2 diabetes, is significantly modulated by oxidative stress. DM is a state of impaired metabolism characterized by hyperglycemia, resulting from defects in insulin secretion or action, or both. ROS such as hydrogen peroxide and the superoxide anion introduce chemical changes virtually in all cellular components, causing deleterious effects on the islets of β-cells, in turn affecting insulin production. Under hyperglycemic conditions, various signaling pathways such as nuclear factor-κβ (NF-κβ) and protein kinase C (PKC) are also activated by ROS. All of these can be linked to a hindrance in insulin signaling pathways, leading to insulin resistance. Hyperglycemia-induced oxidative stress plays a substantial role in complications including diabetic nephropathy. DM patients are more prone to microvascular as well as atherosclerotic macrovascular diseases. This systemic disease affects most countries around the world, owing to population explosion, aging, urbanization, obesity, lifestyle, etc. However, some modulators, with their free radical scavenging properties, can play a prospective role in overcoming the debilitating effects of OS. This review is a modest approach to summarizing the basics and interlinkages of oxidative stress, its modulators and diabetes mellitus. It may add to the understanding of and insight into the pathophysiology of diabetes and the crucial role of antioxidants to weaken the complications and morbidity resulting from this chronic disease.  相似文献   

18.
Overproduction of superoxide anion (O2.?), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.? to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2S). Termed SOPD‐NAC , this persulfide donor reacts specifically with O2.?, decomposing to generate N‐acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self‐assembling peptide (Bz‐CFFE‐NH2) to make a superoxide‐responsive, persulfide‐donating peptide ( SOPD‐Pep ). Both SOPD‐NAC and SOPD‐Pep delivered persulfides/H2S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD‐Pep mitigated toxicity induced by phorbol 12‐myristate 13‐acetate (PMA) more effectively than SOPD‐NAC and several control compounds, including common H2S donors.  相似文献   

19.
One of the most common diseases affecting people and leading to high morbidity is kidney injury. The alleviation of inflammation and apoptosis is considered a potential therapeutic approach for kidney injury. Sophocarpine (SOP), a tetracyclic quinolizidine alkaloid, exhibits various beneficial biological properties. To investigate the effects of SOP on isoproterenol (ISO)-induced kidney injury, we randomly divided mice into four groups: Control, ISO, ISO+SOP (20 mg/kg) and ISO+SOP (40 mg/kg). SOP was administered intraperitoneally to the mice over two weeks, accompanied by intraperitoneal stimulation of ISO (10 mg/kg) for another four weeks. After the mice were sacrificed, several methods such as ELISA, staining (H&E, TUNEL, DHE and Masson) and Western blotting were applied to detect the corresponding indicators. The kidney injury serum biomarkers SCr and BUN increased after the ISO challenge, while this effect was reversed by treatment with SOP. Pathological changes induced by ISO were also reversed by treatment with SOP in the staining. The inflammatory cytokines IL-β, IL-6, TNF-α, MCP-1 and NLRP3 increased after the challenge with ISO, while they were decreased by treatment with SOP. The apoptotic proteins cleaved-caspase-3 and Bax increased, while Bcl-2 decreased, after the challenge with ISO, and these effects were reversed by treatment with SOP. The antioxidant proteins SOD-1 and SOD-2 decreased after being stimulated by ISO, while they increased after the treatment with SOP. The fibrotic proteins collagen I, collagen III, α-SMA, fibronectin, MMP-2 and MMP-9 increased after the challenge with ISO, while they decreased after the treatment with SOP. We further discovered that the TLR-4/NF-κB and TGF-β1/Smad3 signaling pathways were suppressed, while the Nrf2/HO-1 signaling pathway was activated. In summary, SOP could alleviate ISO-induced kidney injury by inhibiting inflammation, apoptosis, oxidative stress and fibrosis. The molecular mechanisms were suppression of the TLR-4/NF-κB and TGF-β1/Smad3 signaling pathways and activation of the Nrf2/HO-1 signaling pathway, indicating that SOP might serve as a novel therapeutic strategy for kidney injury.  相似文献   

20.
Hepatotoxicity is a major global public health concern. Despite advances in modern medicine, the demerits of chemically prepared drugs outweigh their merits. In addition, the treatment of liver diseases based on modern medical principles has been found to produce several undesired side effects. Therefore, the exploration of medicinal plants has gained worldwide attention for treating various diseases, including liver diseases, owing to their potential efficacy and cost effectiveness. Several plants, including Andrographis paniculata, Bauhinia purpurea, Commelina nudiflora, Dillenia suffruticosa, Elaeis guineensis, Lygodium microphyllum, and Nephrolepis biserrata, have been reported with hepatoprotection. Moreover, these plants have been shown to play a vital role in ameliorating cellular damage because they contain several phytochemicals, including alkaloids, saponins, flavonoids, tannins, terpenoids, steroids, polyphenols, and diterpenoid lactones. The following antioxidant, anti-inflammatory, immunomodulatory, and hepatoprotective compounds have been found in these plants: andrographolide, rosmarinic acid, phenol, eugenol, 9,12-octadecadienoic, n-hexadecanoic acid, dihydroxy dimethoxy flavone, sitosterol, demethoxycurcumin, quercetin, linoleic acid, stigmasterol, kojic acid, indole-2-one, α-terpinol, linalool, kaempferol, catechin, ellagic acid, and oleanolic acid. This paper aimed to provide an in-depth review of in vivo studies on Malaysian medicinal plants possessing hepatoprotective properties, phytochemical ingredients, and antioxidant mechanisms, with an emphasis on the species proven particularly useful for treating hepatic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号