首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate constants of electronic energy transfer from the lowest excited state of Ru(bpy)2(L)2+ or Ru(bpy)(L)22+ 10 Ru(L)32+ (b  相似文献   

2.
A light-driven system consisting of tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) as the photosensitizer, semicarbazide as the electron donor and molecular oxygen as the electron acceptor has been employed for hydrogen peroxide production. The efficiency of this photosystem markedly depends on pH: while the peroxide yield is almost negligible at acid, neutral or slightly alkaline pH, it reaches significant values at high hydroxide concentrations, the initial rate of H2O2 formation drastically increasing from pH 12 to pH 14. In 1 M NaOH solutions containing Ru(bpy)32+ and semicarbazide at optimum concentrations, the number of catalytic cycles (or turnover number) undergone by the ruthenium complex over the complete course of the photochemical reaction is as high as 1.1 × 104.

Spectrofluorometric and laser flash photolysis techniques were used to study the primary photochemical reactions involving the excited state of the ruthenium complex as well as the photochemically generated species Ru(bpy)33+ and Ru(bpy)3+. It is proposed that at pH 14 a sequence of reactions leading to O2 photoreduction by electrons from semicarbazide takes place, with the concomitant formation of H2O2; the excited state of Ru(bpy)32+ appears to react via oxidative quenching by oxygen rather than via reductive quenching by semicarbazide. At neutral pH, in contrast, there is no H2O2 formation owing to the fact that semicarbazide is unable to reduce (Ru(bpy)33+ to Ru(bpy)32+, although the photoexcited ruthenium complex is quenched equally by oxygen.  相似文献   


3.
The photophysics of three complexes of the form Ru(bpy)3−(pypm)2+ (where bpy2,2′-bipyridine, pypm 2-(2′-pyridyl)pyrimidine and P=1, 2 or 3) was examined in H2O, propylene carbonate, CH3CN and 4:1 (v/v) C2H5OH---CH3OH; comparison was made with the well-known photophysical behavior of Ru(bpy)32+. The lifetimes of the luminescent metal-to-ligand charge transfer (MLCT) excited states were determined as a function of temperature (between −103 and 90 °C, depending on the solvent), from which were extracted the rate constants for radiative and non-radiative decay and ΔE, the energy gap between the MLCT and metal-centered (MC) excited states. The results indicate that *Ru(bpy)2(pypm)2+ decays via a higher lying MLCT state, whereas *Ru(pypm)32+ and *Ru(pypm)2(bpy)2+ decay predominantly via the MC state.  相似文献   

4.
Recently, much attention has been paid to Ru(II) complexes because of their excellent properties of photochemistry, phtophysis. Bis(2,2'-bipyridine)[4-methyl-4'-(6-bromohexyl)-2,2'-bipyridine] ruthenium(II) perchlorate has been used as an active material for electrochemiluminescent (ECL) sensor for selective detection of oxalic acid.It is known that ECL efficiency of Ru(phen)32+ is much higher than that of Ru(bpy)32+. In order to make out more efficient ECL sensor, we have designed and synthesized a new Ru(II) complex, Ru(phen)2[phen-NHCO(CH2)4Br](PF6)2.  相似文献   

5.
Photochromic nitrospiropyrans substituted with 2,2'-bipyridine (bpy), [Ru(bpy)3]2+, and [Os(bpy)3]2+ groups were synthesized, and their photophysical, photochemical, and redox properties investigated. Substitution of the spiropyran with the metal complex moiety results in strongly decreased efficiency of the ring-opening process as a result of energy transfer from the excited spiropyran to the metal center. The lowest excited triplet state of the spiropyran in its open merocyanine form is lower in energy than the excited triplet MLCT level of the [Ru(bpy)3]2+ moiety but higher in energy than for [Os(bpy)3]2+, resulting in energy transfer from the excited ruthenium center to the spiropyran but inversely in the osmium case. The open merocyanine form reduces and oxidizes electrochemically more easily than the closed nitrospiropyran. Like photoexcitation, electrochemical activation also causes opening of the spiropyran ring by first reducing the closed form and subsequently reoxidizing the corresponding radical anion in two well-resolved anodic steps. Interestingly, the substitution of the spiropyran with a Ru or Os metal center does not affect the efficiency of this electrochemically induced ring-opening process, different from the photochemical path.  相似文献   

6.
The rapid and reliable measurement of hydrogen peroxide (H2O2) is imperative for many areas of technology, including pharmaceutical, clinical, food industry and environmental applications. In this work, a novel multifunctional complex, [Ru(bpy)2(luminol-bpy)](PF6)2 (bpy: 2,20'-bipyridine), was designed and synthesized by incorporating a Ru(II) complex with a luminal group. In the presence of horseradish peroxidase (HRP), reaction of [Ru(bpy)2(luminol-bpy)]2+ with H2O2 can be monitored by three sensing channels including photoluminescence (PL), chemiluminiscence (CL) and eletrochemiluminiscence (ECL). The quantitative assays for H2O2 in aqueous solutions using [Ru(bpy)2(Luminalbpy)]( PF6)2 as a probe were established with PL, ECL and CL signal output modes, respectively.  相似文献   

7.
Porous[Ru(bpy)3]2+-cored supramolecular metal organic framework can efficiently catalyze visible light photoreduction of various azides to afford amines and, through cascade reactions, lactams.  相似文献   

8.
Ru(II)-complex functionalized silica nanoparticles(nano-SiO2) were prepared via a coordination reaction of cis-dichlorobis(2,2'-bipyridine)ruthenium[Ru(bpy)2Cl2] complex with poly(4-vinylpyridine)(P4VP)-modified nano-SiO2 particles. Both the Ru-complex and the functionalized nano-SiO2P4VP-Ru(bpy) hybrids were doped in poly(methyl methacrylate)(PMMA) to form optically transparent thin films. The composition and spectroscopic properties of the nano-SiO2P4VP-Ru(bpy) hybrids were evaluated with the help of thermogravimetric and elemental analysis, and UV-Vis absorption spectroscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, and fluorescence spectroscopy. Microscopy images revealed that the nanohybrids were approximately 12 nm in diameter and readily formed aggregates following the functionalization with P4VP and Ru(bpy)2Cl2. The as-prepared nano-SiO2P4VP-Ru(bpy) hybrids produced emissions at approximately 604 and 654 nm under radiation both in solution and in doped thin films. Finally, cyclic voltammetry studies on the nanohybrid-modified electrode revealed a redox couple with the cathodic and anodic potentials at approximately 0.28 and 0.73 V(vs. Ag/AgCl), attributed to the one electron transfer of Ru(bpy)22+/3+ immobilized on the nano-SiO2 particles.  相似文献   

9.
Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.  相似文献   

10.
Two mononuclear RuII complexes of polypyridyl ligands, cis-[Ru(bpy)2(4,4′-bpy)Cl](PF6)·H2O (1) and cis-[Ru(phen)2(CH3CN)2](PF6)2 (2) (bpy=2,2′-bipyridyl, 4,4′-bpy=4,4′-bipyridyl, and PHEN=1,10-phenanthroline), have been synthesized and characterized by elemental analyses, IR and UV–vis spectra. The crystal structures of both complexes have been determined by X-ray diffraction, indicating that each RuII center is hexa-coordinated (RuN5Cl for 1 and RuN6 for 2) and takes a distorted octahedral geometry. The favored feature of both complexes is that they are quite useful complex precursors for further constructing new functional architectures.  相似文献   

11.
He B  Wenger OS 《Inorganic chemistry》2012,51(7):4335-4342
A molecular ensemble composed of a phenothiazine (PTZ) electron donor, a photoisomerizable dithienylethene (DTE) bridge, and a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) electron acceptor was synthesized and investigated by optical spectroscopic and electrochemical means. Our initial intention was to perform flash-quench transient absorption studies in which the Ru(bpy)(3)(2+) unit is excited selectively ("flash") and its (3)MLCT excited state is quenched oxidatively ("quench") by excess methylviologen prior to intramolecular electron transfer from phenothiazine to Ru(III) across the dithienylethene bridge. However, after selective Ru(bpy)(3)(2+1)MLCT excitation of the dyad with the DTE bridge in its open form, (1)MLCT → (3)MLCT intersystem crossing on the metal complex is followed by triplet-triplet energy transfer to a (3)π-π* state localized on the DTE unit. This energy transfer process is faster than bimolecular oxidative quenching with methylviologen at the ruthenium site (Ru(III) is not observed); only the triplet-excited DTE then undergoes rapid (10 ns, instrumentally limited) bimolecular electron transfer with methylviologen. Subsequently, there is intramolecular electron transfer with PTZ. The time constant for formation of the phenothiazine radical cation via intramolecular electron transfer occurring over two p-xylene units is 41 ns. When the DTE bridge is photoisomerized to the closed form, PTZ(+) cannot be observed any more. Irrespective of the wavelength at which the closed isomer is irradiated, most of the excitation energy appears to be funneled rapidly into a DTE-localized singlet excited state from which photoisomerization to the open form occurs within picoseconds.  相似文献   

12.
The photochemistry of Ru(bpy)(3)+2 in the presence of amines was investigated in water by laser flash photolysis. N,N'-Dimethylaniline and p-phenylenediamine quench the luminescent metal to ligand charge transfer (MLCT) excited state of the complex by an electron transfer reaction that produces the semireduced form Ru(bpy)3+ in relatively high yields. On the other hand, triethylamine (TEA) and aniline do not quench the MLCT. Nevertheless, when laser flash irradiation at 532 nm is carried out in the presence of these amines, the formation of Ru(bpy)3+ is clearly detected by its transient absorption at 510 nm. These results are interpreted by an electron transfer reaction with the participation of a nonemitting excited state of the complex, formed independently of the MLCT from the Franck-Condon or the relaxed singlet excited state. The rate constants for the quenching of this state by TEA and aniline and the quantum yields for Ru(bpy)(3)+ were determined. The new state is formed in a very fast process and has a lifetime of ca 4 micros in water.  相似文献   

13.
A series of rhenium complexes [fac-Re(bpy)(CO)3L][SbF6] (bpy = 2,2′-bipyridine, L = P(nBu)3, PEt3, PPh3, P(OMe)Ph2, P(OiPr)3, P(OEt)3, P(OMe)3, P(OPh)3) has been prepared and characterized by the IR, UV-vis, 1H NMR, 31P NMR, X-ray photoelectron spectroscopy and electrochemical techniques. Variations in the electronic properties, i.e. CO stretching, metal-to-ligand charge transfer transition, and 31P NMR chemical shifts were interpreted on the basis of the electron-acceptor strength of L. However, the redox potential corresponding to [Re(bpy)(CO)3L]+/[Re(bpy)(CO)3L]showed ‘V-character type’ changes after the increase in the electron-acceptor strength of L. Variation of the P(2p) binding energy of the phosphorus atom indicated that the electronic structure of the coordinated phosphorus atom was strongly influenced by the electronic properties of the directly attached substituents.  相似文献   

14.
Singlet and triplet energy transfer processes in [Ru(bipy)2(4-methyl-4′-(2-arylethyl)-2,2′-bipyridine)]2+ have been investigated, where ARYL = 2-naphthyl (Ru-Naph), 9-anthryl (Ru-Anth) and 1-pyrenyl (Ru-Pyrene). In each case fluorescence from the aromatic chromophore is quenched by intramolecular energy transfer to Ru(bipy)32+ whereas emission from the Ru(bipy)32+ moiety is controlled by the relative energy of its 3MLCT state and the pendant arene triplet states. Consequently 3MLCT emission is observed for Ru-Naph whereas it is fully quenched for Ru-Anth. When the two states are isoenergetic (e.g. Ru-Pyrene) a long-lived 3MLCT emission is observed which delays with the same lifetime as the pyrene triplet state (5.23 μs).  相似文献   

15.
Quenching of the 3MLCT excited state of [Ru(bpy)3]2+ (bpy=bipyridine) by the reduction products (MV*+ and MV0) of methyl viologen (MV2+) was studied by a combination of electrochemistry with laser flash photolysis or femtosecond pump-probe spectroscopy. Both for the bimolecular reactions and for the reactions in an Ru(bpy)3(2+)-MVn+ dyad, quenching by MV*+ and MV0 is reductive and gives the reduced ruthenium complex [Ru(bpy)3]+, in contrast to the oxidative quenching by MV2+. Rate constants of quenching (kq), and thermal charge recombination (krec) and cage escape yields (phi(ce)) were determined for the bimolecular reactions, and rates of forward (kf) and backward (kb) electron transfer in the dyad were measured for quenching by MV2+, MV*+, and MV0. The reactions in the dyad are very rapid, with values up to kf = 1.3 x 10(12) s(-1) for *Ru(bpy)3(2+)-MV*+. In addition, a long-lived (tau = 15 ps) vibrationally excited state of MV*+ with a characteristically structured absorption spectrum was detected; this was generated by direct excitation of the MV*+ moiety both at 460 and 600 nm. The results show that the direction of photoinduced electron transfer in a Ru(bpy)3-MV molecule can be switched by an externally applied bias.  相似文献   

16.
Differential Scanning Calorimetry measurements on irradiated Cl3[Ru(NH3)5NO]H2O reveal the existence of two light-induced long-lived metastable states SI, SII. Irradiation with light in the spectral range 400–500 nm leads to the excitation of SI. For the first time we report experimental evidence for the state SII in this compound, which can be excited by transferring SI into SII with irradiation of light in the spectral range 1000–1200 nm. The excitation and transfer of the metastable states is described and the exponential decays are evaluated according to Arrhenius' law yielding activation energies of EA(SI)=0.73(3) eV, EA(SII)=0.66(3) eV and frequency factors of Z(SI)=1 × 1012 s−1, Z(SII) = 5 × 1012 s−1.  相似文献   

17.
Ru(bpy)33+, which is important in artificial photosynthetic systems due to its high reduction potential, is stabilized together with its counter anion, Ru(bpy)3+, by radiolysis of Ru(bpy)32+ adsorbed on silica gel at 77 K. Both species are characterized by electron spin resonance.  相似文献   

18.
Swavey S  Brewer KJ 《Inorganic chemistry》2002,41(24):6196-6198
The mixed-metal supramolecular complex, [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) coupling two ruthenium light absorbers (LAs) to a central rhodium, has been shown to photocleave DNA. This system possesses a lowest lying metal to metal charge transfer (MMCT) excited state in contrast to the metal to ligand charge transfer states (MLCT) of the bpm and Ir analogues. The systems with an MLCT excited state do not photocleavage DNA. [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) is the first supramolecular system shown to cleave DNA. It functions through an excited state previously unexplored for this reactivity, a Ru --> Rh MMCT excited state. This system functions when irradiated with low energy visible light with or without molecular oxygen.  相似文献   

19.
合成了2,3-二甲基-1,4,8,9-四氮三联苯(dmtatp)和2,3-二苯基-1,4,8,9-四氮三联苯(dptatp)两种新配体及它们与2,2′-联吡啶和钌(Ⅱ)的混配物[Ru(bpy)2dmtatp]2+(1)和[Ru(bpy)2dptatp]2+(2),用电子吸收光谱、稳态荧光、粘度测定和圆二色谱研究了配合物与小牛胸腺DNA的相互作用。结合我们以前对配合物[Ru(bpy)2tatp]2+(3)(tatp为1,4,8,9-四氮三联苯)与小牛胸腺DNA的作用研究,得出配合物与DNA的键合强度顺序为:[Ru(bpy)2tatp]2+>[Ru(bpy)2dptatp]2+>[Ru(bpy)2dmtatp]2+,这与插入配体的位阻效应的减少趋势相一致。同时,还测定了配合物与DNA的键合常数。  相似文献   

20.
We have prepared a series of mixed-metal trimetallic complexes of the form {[(bpy)2Ru(BL)]2MCl2}n+(bpy 2,2′-bipyridine; BL 2,3-bis(2-pyridyl)pyrazine (dpp), 2,3-bis(2-pyridyl)quinoxaline (dpq) or 2,3-bis(2-pyridyl)-benzoquinozaline (dpb); M Ir(III), Rh(III) or Os(II). This new class of trimetallic complexes can be prepared with a good yield, often as high as 95%, using our building block strategy. The central rhodium and iridium fragments of these trimetallic, namely [M(BL)2Cl2]+, have been shown in our laboratory to be capable of delivering multiple electrons, “stored” on the bridging ligand π* orbitals, to a substrate as they functioned as electrocatalysts for the reduction of carbon dioxide to formate. The two terminal ruthenium metals are good light absorbers designed to give rise to photochemical activity. These bichromophoric systems should be capable of absorbing two photons of light, each giving rise to a desired photochemical reaction, namely excited-state electron transfer. Thus these systems form the basis of a molecular device for photoinitiated electron collection. The properties of these supramolecular complexes have been tuned by variation in the central metal and bridging ligand. Comparison of this array of nine complexes is described herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号