首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cuboidal Molybdenum have been paid much attention due to their structural resemble with those metallic centers in some biological systems[1]. To explore the chemistry of trinuclear Mo-S cluster complexes[2], we rationally synthesized two compounds:Mo3S4(DTP)3(nicotinate)(Py)·EtOH (Ⅰ) (DTP=diethyl dithiophosphate) and Mo3S4(DTP)3(isonicotinate)(Py)·EtOH (Ⅱ) by the substitution reaction of Mo3S4(DTP)3(L)(Py) (L=ClCH2COO-, CH3COO-) with nicotinic acid and isonicotinic acid, respectively.  相似文献   

2.
The energy-localized CNDO/2 molecular orbitais have been calculated for the clusters containing molybdenum, > {Mo3S42Mo}8+ and> Mo3S4]CuI> 4+, versus the prototype arene-metal sandwich (C6H6)2Cr and half-sandwich complexes C6H6Cr(CO)3. The bonding characteristics of these compounds are described from a localization bonding viewpoint. There are two typical M-arene and M-[Mo3S4] bondings. One is formed by electron donation from the three-center two-electron π-bonds in the arene or [Mo3S4]4+ ligands into the vacant hybrid orbitais of the “stranger” metal atom. In the other M-arene or M-[Mo3S4] bond there is very little donation by the lone electron pair occupying the d AOs of the “stranger” metal atom to the arene or [Mo3S4]4+ ligands. The analogy of the ligand [Mo3S4]4+ in the clusters studied with the ligand benzene is also briefly discussed.  相似文献   

3.
The anion [Fe4S3(NO)7] undergoes slow exchange with labelled nitrite [15NO2] to yield a product [Fe4S3(14NO)(15NO)6] in which complete isotopic exchange has occurred at the basal Fe(NO)2 groups, but with no exchange at the apical Fe(NO) group. The neutral Fe4S4(NO)4 reacts rapidly with [15NO2 to give fully exchanged [Fe4S3(15NO)7], and it is proposed that the conversion proceeds by fragmentation, followed by complete isotopic exchange and rapid reassembly. The binuclear anion [Fe2S2(NO)4]2− also yields, with [15NO2]2− in CD2Cl2 solution, the fully exchanged [Fe4S3(15NO)7], and a mechanism involving successive fragmentation, exchange and reassembly steps is proposed; however in aqueous solution, a clean exchange reaction occurs to give [Fe2S2(15NO)4]2−. Neutral binuclear esters Fe2(SR)2(NO)4 (R = Me, Et, or Ph) with [14NO2] yield the mononuclear paramagnetic [Fe(14NO)2(14NO2)2], and with [15NO2] the analogous [Fe(15NO)2(15NO2)2].  相似文献   

4.
[Mo2(OAc)4] reacts with three or more equivalents of lithium chloride and PMe3 in thf to give [Mo2Cl3(μ-OAc)(PMe3)3]0.75thf (1). The IR spectrum of the complex shows Mo---O and Mo---Cl stretches at 350 and 300 cm−1 respectively and the 1H and 13C NMR spectra suggest several species are present in solution. [Mo2Cl3(μ-OAc)(PMe3)3] converts slowly in thf to [Mo2Cl4(PMe3)4] and [Mo2(OAc)4]. The structure of [Mo2Cl3(μ-OAc) (PMe3)3]0.5C6H5Me (2) has been determined by single-crystal X-ray diffraction methods. Crystals of the toluene solvate are tetragonal with a = 20.726(2), c = 11.776(2) Å, space GROUP = I4cm. The structure was solved by Patterson and Fourier methods and refined to R of 0.035 for the 539 observed data. The molecule contains two metal centres each of which shows 5-fold coordination. The two molybdenum atoms are linked by an acetate bridge and a short Mo---Mo bond of 2.121(3) Å. Remaining coordination sites are occupied on Mo(1) by two Cl and one PMe3 and on Mo(2) by one Cl and two PMe3 groups.  相似文献   

5.
Nest-shaped cluster [MoOICu3S3(2,2′-bipy)2] (1) was synthesized by the treatment of (NH4)2MoS4, CuI, (n-Bu)4NI, and 2,2′-bipyridine (2,2′-bipy) through a solid-state reaction. It crystallizes in monoclinic space group P21/n, a=9.591(2) Å, b=14.820(3) Å, c=17.951(4) Å, β=91.98(2)°, V=2549.9(10) Å3, and Z=4. The nest-shaped cluster was obtained for the first time with a neutral skeleton containing 2,2′-bipy ligand. The non-linear optical (NLO) property of [MoOICu3S3(2,2′-bipy)2] in DMF solution was measured by using a Z-scan technique with 15 ns and 532 nm laser pulses. The cluster has large third-order NLO absorption and the third-order NLO refraction, its 2 and n2 values were calculated as 6.2×10−10 and −3.8×10−17 m2 W−1 in a 3.7×10−4 M DMF solution.  相似文献   

6.
Two new polyoxometalate(POM)-based hybrid compounds, [Cu(en)][H4Mo4O16]0.5(1)(en=ethylene- diamine) and [Ag(3-C5H6N2)2][H2PMo12O40](2)(3-C5H6N2=3-aminopyridine), containing different transition metal-amine subunits were hydrothermally synthesized and characterized by elemental analyses, infrared spectroscopy and single-crystal X-ray diffraction. For compound 1, each [H4Mo4O16]4-(Mo4O16) cluster was linked to four neighboring Mo4O16 clusters through four [Cu(en)]2+ subunits to yield a (2,4)-connected 2D layer, which was further extended to a 3D supramolecular network via hydrogen bonding interactions. For compound 2, the adjacent [H2PMo12O40]- clusters were bridged by [Ag(3-C5H6N2)2]+ subunits to generate a 1D chain. The electrochemical behaviors and the photocatalytic activities of compounds 1 and 2 were studied in detail.  相似文献   

7.
Trinuclear molybdenum clusters show diversity of reactivity towards transition metals and organic ligands. For example, different ligand-substitution and additive reactions can take place at the five coordination sites of Mo3S4(DTP)3(μ-L)(L')(Ⅰ). The bridging ligand μ-L, the terminal DTP'S and the loosely-coordinated ligand L'can be replaced by many carboxylic acids and polar solvents, respectively. By this way, many hetero-metallic cluster derivatives can be synthesized.  相似文献   

8.
The binuclear molybdenum(II) complexes [Mo2(O2CCF3)4(PR3)2] (R = Ph, Et) act as templates for the self-condensation of 2-aminobenzaldehyde to give a new class of complexes in which a hydride ion bridges two molybdenum(III) centres, each of which carries a tetradentate macrocyclic ligand (C). The new hydrido complexes [Mo2(C)2 (H)(O2CCF3)3(PPh3)2] (I), [Mo2(C)2(H)2(O2CCF3)2(PPh3)2] (II), and [Mo2(C)2 (H)2(O2CCF3)2(PEt3)2]2 (V) exist in two or more isomeric forms as shown by their IR, 1H, 31P and 19F NMR spectra. Substitution with thiocyanate, nitrate and tetraphenylborate anions gives the new products [Mo2(C)2(H)(CO)(NCS)3(PPh3)2] (III), [Mo2(C)2 (H)2(O2CCF3)(NO3)(PPh3)2] (IV), [Mo2(C)2(H)(O2CCF3)(PPh3)2](BPh4)2 (VI) and [Mo2(C)2(H)2(O2CCF3)(PEt3)2](BPh4) (VII), which also exist in isomeric forms.  相似文献   

9.
The tetrathiomolybdate ion [MoS4]2− reacts in DMF solution with Roussin esters Fe2(SR)2(NO)4 (R = Me, Et, n-Pr, i-Pr, n-Bu,t-Bu, n-C5H11) to yield the paramagnetic iron nitrosyls [Fe(NO)2(SR)2] (1), [Fe(NO)2(S2MoS2] (2) and [Fe(NO)(S2MOS2)2] (3). The new complexes (2) and (3) have been characterized by EPR spectroscopy and the assignment to them of constitutions based respectively upon tetrahedral and square pyramidal iron is supported by EHMO calculations. Fe2(SPh)2(NO)4 with [MoS4]2− yields only [Fe(NO)2(SPh)2], and preformed (3) reacts with PhS to give firstly EPR-silent species, and then [Fe(NO)2(SPh)2]. The mononitrosyl (3) can also be formed by reaction of [MoS4]2− with [Fe4S3(NO)7], Fe4S4(NO)4, or Fe2I2(NO)4.  相似文献   

10.
过硫酸钾-脲氧化还原引发下的丙烯酰胺水溶液聚合   总被引:3,自引:0,他引:3  
为制备高分子量聚丙烯酰胺(PAM),对其引发体系,尤其是对氧化还原引发做了许多探索[1]。  相似文献   

11.
The interaction between Mo2(O2CCH3)4, Me3SiI and I2 in THF resulted in oxygen abstraction from the solvent and formation of [Mo2(μ-O)(μ-I)(μ-O2CCH3) I2(THF)4]+[MoOI4(THF)] and I---(CH2)4---I. The molybdenum complex has been characterized by X-ray diffractometry. Crystal data: triclinic, space group P , a = 13.827(3) Å; b = 15.803(7) Å; c = 9.950(3) Å; = 93.34(4)°; β = 102.40(2)°; γ = 90.09(2)°; V = 2120(2) Å3; Z = 2; dcalc = 2.559 g cm−3; R = 0.0476 (Rw = 0.0613) for 370 parameters and 3938 data with F02> 3σ(F02). The metal-metal distance in the cation is 2.527(2) Å and indicates a strong interaction. The magnetic behavior is consistent with the assignment of one unpaired electron to the Mo27+ core of the cation and one to the d1 Mo(V) center of the anion. The interaction between Mo(CO)6 and I2 in THF also results in the formation of 1,4-diiodobutane.  相似文献   

12.
V. Kumar  G. Aravamudan 《Polyhedron》1990,9(24):2879-2885
Reaction of 1,3-thiazolidine-2-thione with tellurium(IV) in hydrobromic acid medium gave the hexabromotellurate, [C6H9N2S3]22+[TeIVBr6]2− (3). Reaction of 1-methylimidazoline-2-(3H)-thione (L″) with tellurium(IV), in hydrobromic acid medium, gave the mixed-ligand tellurium(II) complex [TeIIL″3Br]+Br (4). The structures of [C6H9N2S3]22+[TeIVBr6]2− (3) and [TeIIL″3Br]+Br were determined by single crystal X-ray diffraction methods. In 3 the unit cell contains [TeBr6]2− anions and two [C6H9N2S3]+ cations. There is no direct bonding between the metal atom and the cations. In the anion only slight angular deviations from the perfect octahedral geometry are observed. The lone pair of electrons on tellurium(IV) is found to be stereochemically inert. In the cation the two five-membered heterocyclic rings adopt different conformations. In complex 4, in the solid state, the planar [TeIIL″3Br]+ cation and Br anion are held together by ionic interactions. In the cation, L″ is bonded to the central tellurium atom through the sulphur atom.  相似文献   

13.
The dinuclear μ-oxomolybdenum(V) complexes [Mo2O3(PyS)4] (1), [Mo2O3(PySe)4] (2) and [Mo2O3(4-CF3-PymS)4] (3) were obtained by similar reactions of the [MoO2Cl2(DME)] precursor with the corresponding heterocyclic bidentate (N,X) ligands, X = S, Se, where PyS, PySe and 4-CF3-PymS are the anions of pyridine-2-thione, pyridine-2-selenolato and 4-trifluoromethyl-2-pyrimidinthiol, respectively. All compounds were characterized by elemental analysis, IR, NMR, EI-MS spectroscopy and X-ray diffraction. The crystal structures of 1–3 all include the common [Mo2O3]4+ core. Compounds 1 and 2 are isostructural. The catalytic oxo-transfer properties of the molybdenum(V) compounds 1 and 2 were studied by the use of PPh3 in DMSO with a considerably higher catalytic activity for the thionato containing complex 1 than for its selenolato containing analogue 2.  相似文献   

14.
Dissolution of Mo2O5((CH3)2NCH2CH2NHCH2CH2S)2 in dimethylformamide results in the formation of a species without coordinated sulphur, as indicated by 95Mo NMR spectroscopy. Subsequent crystallization of this solution yielded the compound Mo4O12(C12H30N4S2)2(C3H7ON)2 which X-ray crystallography shows to consist of a novel Mo4O12 core, containing an eight-membered Mo4O4 ring with the two pairs of diagonal molybdenum atoms linked by disulphido-containing groups.  相似文献   

15.
The reaction between NiCl2, NaSPh and NaEH (E = S, Se) in a mixture of acetonitrile and acetone gave trinuclear clusters [Ni33-E)(μ-SPh)3(SPh)3]2−(E = S, Se) and the previously characterized mononuclear complex [Ni(SPh)4]2−. The X-ray structures of the trinuclear clusters are similar to each other except for the Ni3E (E = S, Se) sections, and the Ni---E (E = S, E = S, Se) frameworks planes which are condensed via adjacent edges to form planar NiS4 or NiS3Se coordination planes which are condensed via adjacent edges to form cyclic systems with a triply bridging sulfido or selenido ion in the centre.  相似文献   

16.
Abstract By reacting the unique Keplerate type molybdenum-oxide based polyoxometalate (NH4)42·[MoI320372·(CH3COO)30(H2O)y2]·ca.300H2·ca. 10CH3COONH4(1) with tetramethylammonium bromide, a new derivative (NH4)26[TMA]16{MoI32O372(H2O)72(CH3COO)30}·ca.7NH4CH3COO·ca.189H2O(2, TMA=tetramethylammonium) was prepared. Compound 2 was characterized by Fourier transform infrared spectroscopy(FTIR), UV-Vis, elemental and thermogravimetric analyses. By the well-established Z-scan technique, investigations on the nonlinear opti- cal(NLO) properties of the series of compounds derived from the Keplerate type molybdenum-oxide-based poly- oxometalate, namely, the newly prepared compound 2, the three previously reported compounds, included compound 1, (NH4hs(TBA)24{Mo132O372(H2O)72(CH3COO)30}·ca.7NH4CH3COO·ca. 173H2O(3, TBA=tetrabutylammonium) and (DODA)40(NH4)2[(H2O)nMo132O372(CH3COO)3o(H20)72](4, DODA=dimethyldioctadecylammonium), reveal that the third-order nonlinearity[x(3)] values of compounds 1, 2 and 3 in the DMF/H2O solution and compound 4 in chloro- form are almost the same, which indicates that the counter cations with different length of alkyl chains show ignora- ble impacts on the NLO susceptibility. In other words, the remarkable third-order nonlinearities[x(3)≈10 19 m2/V2] mainly come from the [MoI32O372(CH3COO)30(H2O)72]42 anions. This fact reveals that the applications of the NLO active polyoxometalates in various environments(such as hydrophilic, hydrophobic, polar, apolar, etc.) can be achieved by simply varying cations to meet the demands in the design of diverse devices. Keywords Keplerate type polyoxometalate; Nonlinear optical property; Z-Scan technique; Self-defocusing; Reverse saturable absorption  相似文献   

17.
The reaction of K[ReH6(PPh3)2] with [RhCl(CO)L2] [L= PPh3, 1,2,5-triphenylphosphole (TPP), or P(OMe)3] leads to the new electronically unsaturated heterobimetallic polyhydride complexes [(CO)(PPh3)2HRe(μ-H)3RhL2] in moderate-to-good yields. The structures of these complexes have been established on the basis of spectroscopic data, especially 1H and 31P NMR. The bridging hydride ligands are fluxional but there is either a slow or nonexistent exchange between terminal and bridging hydrides. For L = PPh3 or TPP, protonation with tetrafluoroboric acid affords quantitatively the cationic complexes [(CO)(PPh3)2HRe(μ-H)3RhHL2]+, isolated as the BF4 or the BPh4 salts.  相似文献   

18.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

19.
The heterobimetallic trinuclear sulfido clusters [(Cp*Ir)23-S)2MCl2] (M=Pd (3), Pt (4); Cp*=η5-C5Me5) were synthesized from the dinuclear hydrogensulfido complex [Cp*IrCl(μ-SH)2IrCp*Cl] (2) and [MCl2(COD)] (COD=cycloocta-1,5-diene), while the reaction of 2 with [Pd(PPh3)4] afforded the cationic trinuclear cluster [(Cp*Ir)23-S)2PdCl(PPh3)]Cl (5). Clusters 3 and 4 reacted with PPh3 to give a series of mono and dicationic clusters including 5, while the dicationic clusters [(Cp*Ir)23-S)2M(dppe)][BPh4]2 (M=Pd (9), Pt (10); DPPE=Ph2PCH2CH2PPh2) were obtained by the reaction with dppe followed by anion metathesis. The molecular structures of 5·CH2Cl2, 9·CH3COCH3, and 10·CH3COCH3 were determined by X-ray crystallography. Clusters 3 and 4 were found to catalyze the addition of alcohols to alkynes to give the corresponding acetals. Internal 1-aryl-1-alkynes were transformed by cluster 3 into the corresponding 2,2-dialkoxy-1-arylalkanes with high regioselectivity up to 99:1, while cluster 4 was a much less regioselective catalyst.  相似文献   

20.
Two novel 3D supramolecular architectures with hexamolybdate and phosphotungstate anions were synthesized under ionothermal conditions. The structures were named as[CuI(L1)2]2L2[Mo6O19](1) and[CuI(L3)2]2.5· H0.5[PW12O40]·H2O(2)(L1=2,2'-bipyridine, L2=4,4'-bipyridine, L3=2,2'-biimidazole) and characterized via Fourier transform infrared spectroscopy(FTIR) and FT-Raman spectroscopy analyses. Single-crystal X-ray diffraction analysis revealed that the two compounds crystallized in the space group P and were constructed through hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号