首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effect of temperature increase and freezing on intravascular elastography   总被引:3,自引:0,他引:3  
Intravascular ultrasound (IVUS) elastography is a technique that assesses the local strain in the vessel wall and plaque. The strain is an important parameter for characterization of different plaque components. These regions are related to plaque vulnerability. IVUS elastography was validated in vitro using human coronary and femoral arteries. These experiments were performed on specimens that were stored frozen and measured at room temperature for practical issues. The aim of this study is to determine the influence of freezing and measuring the tissues at room temperature (23 degrees C instead of 37 degrees C) on the elastic properties. Four human coronary, one carotid and one femoral arteries were first measured at 23 degrees C and next at 37 degrees C. Additionally they were stored at -80 degrees C for up to 24 h and finally measured at 23 degrees C. Acquisitions at intraluminal pressures of 80 and 100 mmHg were performed using an EndoSonics 20 MHz Visions catheter. Elastograms were determined from the IVUS rf-data (sampled at 100 MHz in 12 bits) that were obtained from a digital interface. Qualitative and quantitative analysis of the elastograms obtained from fresh and frozen specimens measured at 23 degrees C reveals that storage of the specimen at -80 degrees C has no significant influence. In vitro experiments can be performed at room temperature after storage of the tissue at -80 degrees C without significant affection of the information with respect to measuring fresh ex vivo material at body temperature.  相似文献   

2.
BACKGROUND AND GOAL: More than 60% of all myocardial infarction is caused by rupture of a vulnerable plaque. A vulnerable plaque can be described as a large, soft lipid pool covered by a thin fibrous cap. Plaque material composition, geometry, and inflammation caused by infiltration of macrophages are considered as major determinants for plaque rupture. For diagnostic purposes, these determinants may be obtained from elastograms (i.e. radial strain images), which are derived from intravascular ultrasound (IVUS) measurements. IVUS elastograms, however, cannot be interpreted directly as tissue component images, because radial strain depends upon plaque geometry, plaque material properties, and used catheter position. To understand and quantify the influence of these parameters upon measured IVUS elastograms, they were varied in a finite element model (FEM) that simulates IVUS elastograms of vulnerable plaques. MATERIALS AND METHODS: IVUS elastography measurements were performed on a vessel mimicking phantom, with a soft plaque embedded in a hard wall, and an atherosclerotic human coronary artery containing a vulnerable plaque. Next, FEMs were created to simulate IVUS elastograms of the same objects. In these FEMs the following parameters were varied: Young's modulus (E), Poisson's ratio (nu) in range 0.49-0.4999, catheter position (translation of 0.8 mm), and cap thickness (t) in range 50-350 microm. Hereby the resulting peak radial strain (PRS) was determined and visualized. RESULTS: Measured static E for phantom was 4.2 kPa for plaque and 16.8 kPa for wall.Variation of E-wall in range 8.4-33.2 kPa and/or E-plaque in range 2.1-8.4 kPa using the phantom FEM, gave a PRS variation of 1.6%, i.e. from 1.7% up to almost 3.3%; for variation in nu this was only 0.07%, i.e. from 2.37% up to 2.44%. Variation of E-lipid in range 6.25-400 kPa and E-cap in range 700-2300 kPa using the artery FEM, gave a PRS variation of 3.1%, i.e. from 0.6% up to 3.7%. The PRS was higher for lower E-lipid and E-cap; it was located at a shoulder of the lipid pool. Variation of nu gave only a variation of 0.17%. Variation of t and E-cap resulted in a PRS variation of 1.4%, i.e. from 0.3% up to 1.7%; thinner and weaker caps gave higher PRS. Catheter position variation changed radial strain value. CONCLUSIONS: Measured IVUS elastograms of vulnerable plaques depend highly upon the Young's modulus of lipid and cap, but not upon the Poisson's ratio. Different catheter positions result in different IVUS elastograms, but the diagnostically important high strain regions at the lipid shoulders are often still detectable. PRS increases when cap weakens or cap thickness decreases.  相似文献   

3.
Spectral estimators in elastography   总被引:1,自引:0,他引:1  
Konofagou EE  Varghese T  Ophir J 《Ultrasonics》2000,38(1-8):412-416
Like velocity, strain induces a time delay and a time scaling to the received signal. Elastography typically uses time delay techniques to indirectly (i.e. via the displacement estimate) measure tissue strain induced by an applied compression, and considers time scaling as a source of distortion. More recently, we have shown that the time scaling factor can also be spectrally estimated and used as a direct measure of strain. Strain causes a Doppler-like frequency shift and a change in bandwidth of the bandpass power spectrum of the echo signal. Two frequency shift strain estimators are described that have been proven to be more robust but less precise when compared to time delay estimators, both in simulations and experiments. The increased robustness is due to the insensitivity of the spectral techniques to phase decorrelation noise. In this paper we discuss and compare the theoretical and experimental findings obtained with traditional time delay estimators and with the newly proposed spectral methods.  相似文献   

4.
Hoyt K  Forsberg F  Ophir J 《Ultrasonics》2006,44(1):99-108
This paper compares the performance of various spectral shift estimators for use in spectral elastography, namely, the normalized cross-correlation (NCC), sum squared difference (SSD) and sum absolute difference (SAD). Simulation and experimental results demonstrate that the spectral SSD-based elastographic method exhibits no marked difference in performance compared to the more computationally costly NCC-based approach, which has conventionally been the preferred estimator in spectral elastography. The spectral SAD-based strain estimator, despite being computationally less burdening, failed to exhibit performance comparable to that of the NCC- and SSD-based techniques. Furthermore, though spectral subsample estimation techniques using a cosine-fit interpolation method outperformed that of the parabolic-fit method in terms of both reduced bias errors and standard deviations, the latter was analyzed in this study due to computational simplicity. The role of spectral density was evaluated without and with parabolic-based subsample interpolation. Based on minimizing computational complexity, it is concluded that a (low density) spectral SSD strain estimator coupled with parabolic-based subsample estimation is the preferred choice for spectral elastography.  相似文献   

5.
In magnetic resonance elastography (MRE), shear waves at a certain frequency are encoded through bipolar gradients that switch polarity at a controlled encoding frequency and are offset in time to capture wave propagation using a controlled sampling frequency. In brain MRE, there is a possibility that the mechanical actuation frequency is different from the vibration frequency, leading to a mismatch with encoding and sampling frequencies. This mismatch can occur in brain MRE from causes both extrinsic and intrinsic to the brain, such as scanner bed vibrations or active damping in the head. The purpose of this work was to investigate how frequency mismatch can affect MRE shear stiffness measurements. Experiments were performed on a dual-medium agarose gel phantom, and the results were compared with numerical simulations to quantify these effects. It is known that off-frequency encoding alone results in a scaling of wave amplitude, and it is shown here that off-frequency sampling can result in two main effects: (1) errors in the overall shear stiffness estimate of the material on the global scale and (2) local variations appearing as stiffer and softer structures in the material. For small differences in frequency, it was found that measured global stiffness of the brain could theoretically vary by up to 12.5% relative to actual stiffness with local variations of up to 3.7% of the mean stiffness. It was demonstrated that performing MRE experiments at a frequency other than that of tissue vibration can lead to artifacts in the MRE stiffness images, and this mismatch could explain some of the large-scale scatter of stiffness data or lack of repeatability reported in the brain MRE literature.  相似文献   

6.
Strain and motion measurements in balanced steady-state free precession (bSSFP) imaging require high magnetic field homogeneity. This requirement is due to the nonlinear signal response to spin phase variations in bSSFP. Here, a technique that utilizes background gradients for preparing strong in-plane spin phase variations is proposed. As a result, periodic patterns of increased motion sensitivity appear, which are interleaved with bands of low phase-to-noise ratio. Spatial filters commonly used in MR elastography (MRE) remove these bands and leave wave images equivalent to a uniform phase response in bSSFP-MRE. Since phase preparation gradients locally enhance motion sensitivity, the technique can be employed for selectively increasing the wave signal amplitude in MRE. The method is applied without the need for previous shimming, which reduces the examination time. In vivo phase prepared bSSFP-MRE is demonstrated in human liver and heart.  相似文献   

7.
Vascular tissue characterisation with IVUS elastography   总被引:1,自引:0,他引:1  
Knowledge about the mechanical properties of the vessel wall and plaque is important for guiding intravascular interventional procedures and detection of plaque vulnerability. Rupture of atherosclerotic plaques is associated with acute myocardial infarction and unstable angina pectoris. In a plaque with a lipid core, the stress due to the arterial pulsation will be concentrated in the cap and a thin cap may be unable to bear this stress. In this study, the potential of intravascular elastography to characterise fibrous, fibro-fatty and fatty tissue based on their mechanical properties was investigated. Using a custom-made set-up, intravascular echograms and elastograms of excised human femoral arteries were determined. High frequency r.f. data (30 MHz) were acquired using an intravascular catheter. The tissue was compressed using intravascular pressures of 80 and 100 mmHg. The cross-sections of interest were marked with a needle for matching with histology. Using cross-correlation estimation of gated echosignals, elastograms (images of the local strain) were determined. After the intravascular experiments, the specimens were fixed in formaldehyde and processed for paraffin embedding. Sections were stained with picrosirius red and alpha-actin to counterstain collagen and smooth muscle cells (SMC), respectively. Results of vessel cross-sections with fibrous and fatty plaque regions will be presented. The elastograms of these specimens show that the strain in fatty tissue is higher than the strain in fibrous material. In conclusion, these in vitro experiments on human femoral arteries indicate the potential of intravascular elastography to characterise different plaque components.  相似文献   

8.
Intravascular ultrasound elastography: an overview   总被引:10,自引:0,他引:10  
The composition and morphology of the atherosclerotic lesion are currently considered more important determinants of acute coronary ischemic syndromes than the degree of stenosis. When a lesion is unstable, it may rupture and cause an acute thrombotic reaction. A rupture prone plaque contains a large lipid pool covered by a thin fibrous cap. The stress in the cap increased with decreasing thickness. Additionally, it may be weakened by macrophage infiltration. Intravascular ultrasound elastography might be an ideal technique to assess the presence of lipid pools and identify high stress regions. Elastography is a technique to assess local mechanical properties of tissue. The underlying principle is that the deformation of tissue by a mechanical excitation is a function of its mechanical properties. The deformation of the tissue is determined using ultrasound. For intravascular purposes, the intraluminal pressure is used as the excitation force. The radial strain in the tissue is obtained by cross-correlation techniques on the radio frequency (rf) signal. The strain is colour-coded and plotted as a complimentary image to the IVUS echogram. Elastography was validated in vitro using diseased human coronary and femoral arteries. After the ultrasound experiments, the specimens were processed for routine histology to counterstain collagen, smooth-muscle cells, and macrophage activity. Regions were segmented in the elastograms based on their strain values. Next, the dominant plaque type (fibrous, fibro-fatty or fatty) was defined by observers blinded to the elastographic result. These experiments demonstrate that the strain in the three plaque types is different (Kruskall-Wallis p < 0.001). Especially between fibrous and fatty tissue, a highly significant difference (Wilcoxon p < 0.001) was found. In vivo, the technique is validated in an atherosclerotic Yucatan mini-pig animal model. High-resolution echo frames (30 frames per second) were acquired near end-diastole. In this phase of the pressure cycle, catheter motion was minimal. Frames with a pressure difference of approx. 5 mm Hg were taken to determine the elastograms. This in vivo validation study in Yucatan mini-pigs revealed higher strain values in fatty material (ANOVA p < 0.001). All cross-sections with a fatty plaque were identified with the elastogram by the presence of high strain values. Additionally, data are acquired in patients referred for Percutaneous Transluminal Coronary Angioplasty with the same set-up as tested in the animal study. Ultrasound data of soft, fibrous, calcified and stented plaques are acquired near end-diastole. The elastogram of soft plaques. as identified from the deformation during the pressure cycle, reveals strain values of 1% with increased strain up to 2% at the shoulders of the plaque. Calcified material, as identified from the echogram, shows low strain values of 0-0.2%. The elastogram of stented plaques reveals very low strain values, except for two regions: these are between the stent struts and at the shoulders of the plaque. In conclusion, intravascular elastography appears to be a unique tool to determine local mechanical properties in atherosclerotic lesions to identify fibrous and fatty tissue. Experiments have demonstrated the feasibility of this technique to be applied in vivo.  相似文献   

9.
We study discrete nonlinear maps in which the control parameter is itself “modulated” by another discrete nonlinear map. We show that for a certain class of such maps, which includes for example the logistic map, the periodicity of the modulated signal is either one, independent of the periodicity of the modulating signal, or its periodicity is an integral multiple of the periodicity of the modulating signal or it is chaotic.  相似文献   

10.
The transient radiation of low-frequency elastic waves through isotropic and homogeneous soft media is investigated using the Green's function approach. A careful analysis of the coupling term is performed and yields the introduction of a very near field region in which its amplitude behaves as 1/r. To address the calculation of impulse responses, a simplified Green's function is proposed for semi-infinite media and compared to exact solutions. Impulse response calculations are successfully compared with experimental measurements obtained for circular radiators of different diameters using transient elastography. Results presented in this paper provide a better understanding of the role of the coupling term in elastography and should be used to compensate diffraction and coupling effects observed in transient elastography.  相似文献   

11.
《Physics letters. A》1999,262(1):27-34
When arbitrary phase rotations are used instead of inversions in Grover's quantum algorithm, they must satisfy a matching condition. When phase matching is satisfied, the quantum search is an approximate rotation in 2-dimensional space. An approximate formula for the amplitude is derived. A simple explanation is also given.  相似文献   

12.
Shear strain estimation and lesion mobility assessment in elastography   总被引:5,自引:0,他引:5  
Konofagou EE  Harrigan T  Ophir J 《Ultrasonics》2000,38(1-8):400-404
Elastography typically measures and images the normal strain component along the insonification/compression axis, i.e., in the axial direction. We have recently shown that, by using interpolation and cross-correlation methods of transversely displaced RF echo segments, it is possible to measure and image displacement and strain transversely to the beam with good precision. This enables the estimation and imaging of all three principal normal strain components. Generally, motion in a direction other than that in which strain is estimated may result in decorrelation noise, severely corrupting the estimates. Therefore, a correction method is applied to correct the displacement and strain estimates for decorrelating motion. In this paper, we show how corrected displacement estimates can also be used to estimate and image the shear strain components. This may allow us to identify regions of decorrelation noise in the normal strain measurement that are due to shear strain. Shear strain estimates provide supplementary information, which can characterize different tissue elements based on their mobility. In the case of breast lesions, low mobility is related to malignancy. Following an in vivo case, we show with 2D simulations how assessment of tumor mobility can be achieved with shear strain estimation.  相似文献   

13.
Romanov D  Filin A  Compton R  Levis R 《Optics letters》2007,32(21):3161-3163
We analytically describe the effect of phase-matching conditions on femtosecond BOXCARS line shape and demonstrate quantitative agreement with experimental spectra for the oxygen vibrational transition, DG01=1556.4 cm(-1).  相似文献   

14.
Since the equations of general relativity are nonlinear, it is not strictly correct to obtain average values by integrating over spatial volumes. Yet this is really what is done in the attempt to fit our rather lumpy universe to a standard cosmological model of uniform density. Consequently, the fitting problem, raised last year by Ellis and Stoeger [1], asks how accurate the average values derived from observational cosmology can be, even without measurement uncertainties. Do they really describe the best-fit Robertson-Walker model to our universe? One of the alternatives to averaging they suggested was that of volume matching. We try to provide a first estimate of the error due to averaging by fitting a Robertson-Walker model to an inhomogeneous Tolman model using realistic density profiles. Comparing the results from volume matching and from averaging, we find that errors are of the order of 10% or more.  相似文献   

15.
We present new theoretical concepts for Fresnel phase matching. A guided wave approach is described, which allows us to intrinsically take into account all the physical processes involved. To cite this article: M. Raybaut et al., C. R. Physique 8 (2007).  相似文献   

16.
组织力学特性与其生理病理变化过程密切相关.因此,对组织力学特性的分析有望为疾病诊断提供重要依据.超声弹性成像可以定量分析组织的剪切模量,但在检测的特异性和灵敏度等方面仍存在局限性.针对这一问题,该文发展一种磁纳米粒子介导的靶向剪切波弹性成像新方法.该方法是基于磁纳米粒子在脉冲磁场作用下产生磁致振动,从而导致周围组织的剪...  相似文献   

17.
The purpose of this study was to develop a new technique for a powerful compact MR elastography (MRE) actuator based on a pneumatic ball-vibrator. This is a compact actuator that generates powerful centrifugal force vibrations via high speed revolutions of an internal ball using compressed air. This equipment is easy to handle due to its simple principles and structure. Vibration frequency and centrifugal force are freely adjustable via air pressure changes (air flow volume), and replacement of the internal ball. In order to achieve MRI compatibility, all parts were constructed from non-ferromagnetic materials. Vibration amplitudes (displacements) were measured optically by a laser displacement sensor. From a bench test of displacement, even though the vibration frequency increased, the amount of displacement did not decrease. An essential step in MRE is the generation of mechanical waves within tissue via an actuator, and MRE sequences are synchronized to several phase offsets of vibration. In this system, the phase offset was detected by a four-channel optical-fiber sensor, and it was used as an MRI trigger signal. In an agarose gel phantom experiment, this actuator was used to make an MR elastogram. This study shows that the use of a ball actuator for MRE is feasible.  相似文献   

18.
换能器的阻抗匹配设计   总被引:3,自引:0,他引:3       下载免费PDF全文
鲍建东 《应用声学》1996,15(3):37-39,31
本文从基本的电学原理,详细推导出变压吕的互耦阻抗及变压器的阻抗变换关系,提出了换能器阻抗匹配较理想的设计方法,在工程设计中较好的实用价值。  相似文献   

19.
叶红霞  金亚秋 《计算物理》2006,23(5):609-613
从基本球面波函数的平面波展开式出发,分析了对空间角谱二维积分表达式中被积函数频谱特性,从采样定理的角度得出(2L,4L)的求积标准.比较了采用不同的求积方式得到的积分结果,并与球面波函数的准确值进行比较.对轴向平面电磁波照射的立方导体进行直接的矩量法(MOM)分析和不同求积点的FMM方法分析,比较两种方法计算得到的阻抗矩阵与入射向量相乘的结果.结果表明:用该求积方式得到结果与直接MOM方法的计算结果吻合.  相似文献   

20.
血管内超声(IVUS)图像的仿真有助于检验诸如图像分割等图像处理算法的性能。提出一种IVUS图像仿真的方法。该方法在极坐标图像生成模型中引入环晕、导丝伪影,并分别对粥样硬化斑块的纤维、脂质、钙化三个区域进行模拟,实现静态图像的仿真;运用血管随心脏搏动的变化规律,实现序列图像的仿真。通过对15例真实IVUS图像、每例各50次的实验表明,相对于传统的极坐标图像生成模型,该方法仿真的图像与真实图像的相关系数提高了56.9%,互信息提高了24.3%,其仿真效果更加接近真实图像。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号