首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical study of the ScCn, ScCn+, and ScCn- (n = 1-8) open-chain clusters has been carried out. Predictions for their electronic energies, rotational constants, dipole moments and vibrational frequencies have been made using the B3LYP method with different basis set including effective core potentials, ECPs. For the ScCn open-chain clusters the lowest-lying states correspond to quartet states for n-odd members, whereas for n-even species the ground state is found to be a doublet. In the cationic and anionic species, the electronic ground state is found to be a singlet for even n and a triplet for odd n. An even-odd parity effect (n-even clusters being more stable than n-odd ones) is observed in neutral and charged clusters. Ionization energies and electron affinities also exhibit a clear parity alternation trend, with n-even clusters having higher values than n-odd ones.  相似文献   

2.
We have calculated the structural and energetic properties of neutral and ionic (singly charged anionic and cationic) semiconductor binary silicon-germanium clusters Si(m)Ge(n) for s = m + n ≤ 12 using the density functional theory (DFT-B3LYP) and coupled cluster [CCSD(T)] methods with Pople's 6-311++G(3df, 3pd) basis set. Neutral and anionic clusters share similar ground state structures for s = 3-7, independent of the stoichiometry and atom locations, but start to deviate at s = 8. The relative energetic stability of the calculated ground state structures among possible isomers has been analyzed through a bond strength propensity model where the pair interactions of Si-Si, Si-Ge, and Ge-Ge are competing. Electron affinities, ionization potentials, energy gaps between the highest and lowest occupied molecular orbitals (HOMO-LUMO gaps), and cluster mixing energies were calculated and analyzed. Overall, for a fixed s, the vertical ionization potential increases as the number of silicon atoms m increases, while the vertical electron affinity shows a dip at m = 2. As s increases, the ionization potentials increase from s = 2 to s = 3 and then decrease slowly to s = 8. The mixing energies for neutral and ionic clusters are all negative, indicating that the binary clusters are more stable than pure elemental clusters. Except for s = 4 and 8, cationic clusters are more stable than anionic ones and, thus, are more likely to be observed in experiments.  相似文献   

3.
Chlorine adsorption on small neutral, anionic, and cationic silver clusters Ag(n) (n=2-7) has been studied using the PW91PW91 density functional method. It was found that the adsorption of chlorine on the lowest-energy bare clusters does not always produce the lowest-energy complexes. In addition, the binding of chlorine can greatly change the geometries of the silver clusters in some cases. Among various possible adsorption sites, bridge site is energetically preferred for the neutral Ag(n) while top site is energetically more preferred for the anionic Ag(n) with n< or =6. For cationic clusters, adsorptions on bridge and face sites have similar binding energies, which are much larger than those on top sites. Natural bond orbital analyses show that irrespective of charge state, electrons always transfer from silver atoms to adsorbate and silver acts like alkali metals in the interaction with chlorine atom. Significant odd-even alternation patterns in the properties of the complexes have been observed: Even-electron clusters often have higher ionization energies, lower electron affinities, and higher dissociation energies than their odd-electron neighbors. It was also found that chlorine atoms bind more strongly with odd-electron bare clusters than with even-electron bare clusters. These patterns reveal that even-electron clusters are more stable than odd-electron clusters.  相似文献   

4.
The (TiO2)n clusters and their anions for n = 1-4 have been studied with coupled cluster theory [CCSD(T)] and density functional theory (DFT). For n > 1, numerous conformations are located for both the neutral and anionic clusters, and their relative energies are calculated at both the DFT and CCSD(T) levels. The CCSD(T) energies are extrapolated to the complete basis set limit for the monomer and dimer and calculated up to the triple-zeta level for the trimer and tetramer. The adiabatic and vertical electron detachment energies of the anionic clusters to the ground and first excited states of the neutral clusters are calculated at both levels and compared with the experimental results. The comparison allows for the definitive assignment of the ground-state structures of the anionic clusters. Anions of the dimer and tetramer are found to have very closely lying conformations within 2 kcal/mol at the CCSD(T) level, whereas that of the trimer does not. In addition, accurate clustering energies and heats of formation are calculated for the neutral clusters and compared with the available experimental data. Estimates of the titanium-oxygen bond energies show that they are stronger than the group VIB transition metal-oxygen bonds except for tungsten. The atomization energies of these clusters display much stronger basis set dependence than the clustering energies. This allows the calculation of more accurate heats of formation for larger clusters on the basis of calculated clustering energies.  相似文献   

5.
The adsorption properties of NO molecule on anionic, cationic, and neutral Au(n) clusters (n=1-6) are studied using the density functional theory with the generalized gradient approximation, and with the hybrid functional. For anionic and cationic clusters, the charge transfer between the Au clusters and NO molecule and the corresponding weakening and elongation of the N-O bond are essential factors of the adsorption. The neutral Au clusters have also remarkable adsorption ability to NO molecule. The adsorption energies of NO on the cationic clusters are generally greater than those on the neutral and anionic clusters.  相似文献   

6.
The neutral, anionic, and cationic SnnTi(0, ±1) (n?=?1–10) units are researched computationally using a density functional theory. The optimized geometries of SnnTi(0, ±1) clusters illustrate that the most stable structures between the neutral, anionic, and cationic clusters keep the similar structures when n?=?1, 2, 4, 5, 9,10, however, we find that the obtained most stable clusters of the size n?=?3, 6, 7, 8 are different. From the optimized results a systematic analysis is carried out to obtain the relative stabilities, electronic properties, and natural population analysis of SnnTi(0, ±1) clusters. The relative stabilities are investigated by analyzing the binding energies, fragmentation energies, and the second order energies difference of SnnTi(0, ±1) clusters, the results show that the binding energies of anionic clusters are obviously larger than those of neutral and cationic clusters. The HOMO–LUMO gap, the adiabatic electron affinity, vertical electron detachment energy, adiabatic ionization potential energy, and vertical ionization potential energy respond the electronic property, we obtain that the Ti atom changes the electron structures of stannum clusters. To discuss reliable charge transfer information from SnnTi clusters to SnnTi? clusters and SnnTi+ clusters, the natural population analysis of neutral, anionic, and cationic SnnTi(0,±1) clusters are calculated.  相似文献   

7.
Cationic and anionic cobalt oxide clusters, generated by laser vaporization, were studied using guided-ion-beam mass spectrometry to obtain insight into their structure and reactivity with carbon monoxide. Anionic clusters having the stoichiometries Co2O3(-), Co2O5(-), Co3O5(-) and Co3O6(-) were found to exhibit dominant products corresponding to the transfer of a single oxygen atom to CO, indicating the formation of CO 2. Cationic clusters, in contrast, displayed products resulting from the adsorption of CO onto the cluster accompanied by the loss of either molecular O 2 or cobalt oxide units. In addition, collision induced dissociation experiments were conducted with N 2 and inert xenon gas for the anionic clusters, and xenon gas for the cationic clusters. It was found that cationic clusters fragment preferentially through the loss of molecular O 2 whereas anionic clusters tend to lose both atomic oxygen and cobalt oxide units. To further analyze how stoichiometry and ionic charge state influence the structure of cobalt oxide clusters and their reactivity with CO, first principles theoretical electronic structure studies within the density functional theory framework were performed. The calculations show that the enhanced reactivity of specific anionic cobalt oxides with CO is due to their relatively low atomic oxygen dissociation energy which makes the oxidation of CO energetically favorable. For cationic cobalt oxide clusters, in contrast, the oxygen dissociation energies are calculated to be even lower than for the anionic species. However, in the cationic clusters, oxygen is calculated to bind preferentially in a less activated molecular O 2 form. Furthermore, the CO adsorption energy is calculated to be larger for cationic clusters than for anionic species. Therefore, the experimentally observed displacement of weakly bound O 2 units through the exothermic adsorption of CO onto positively charged cobalt oxides is energetically favorable. Our joint experimental and theoretical findings indicate that positively charged sites in bulk-phase cobalt oxides may serve to bind CO to the catalyst surface and specific negatively charged sites provide the activated oxygen which leads to the formation of CO 2. These results provide molecular level insight into how size, stoichiometry, and ionic charge state influence the oxidation of CO in the presence of cobalt oxides, an important reaction for environmental pollution abatement.  相似文献   

8.
The hybrid HF/DFT method B3LYP has been employed to investigate the geometrical and electronic structures of AuC n (n = 1–11) clusters. The properties such as geometrical parameters and electronic energies are determined for open-chain and cyclic species. Our results indicate that the open-chain structures with low spin states (doublet) are more stable than the cyclic ones for the small sizes clusters (n ≤ 9), as the cluster sizes increase (n = 10, 11), the cyclic species are more stable. The incremental binding energies show a smooth even–odd alternation phenomenon for open-chain species, n-even (n is the numbers of C atom in the clusters) species have the stronger stabilities relative to the adjacent odd-numbered ones. In addition, the most favorable dissociation channels are determined by calculating the fragmentation energies accompanying various possible pathways. The studied clusters incline to be dissociated to Au + C n and AuC n?3 + C3 fragments.  相似文献   

9.
Density functional theory (DFT) calculations are performed to study Cu2Ox (x = 1 - 4) clusters in their neutral, anionic and cationic states. The ground state structures are obtained and found to exhibit linear or near linear structures, which are different from the two- or three-dimensional ones suggested by the previous theoretical calculations. The calculated electron affinities of the clusters are in good agreement with the experimental ones. The low-lying excited states for the clusters are calculated using time-dependent DFT and used to assign the features in the photoelectron spectra. Our results compare well with the available experimental data.  相似文献   

10.
The electronic structures of CuBO(2)(-), Cu(BO(2))(2)(-), Cu(2)(BO(2))(-), and Cu(2)(BO(2))(2)(-) clusters were investigated using photoelectron spectroscopy. The measured vertical and adiabatic detachment energies of these clusters revealed unusual properties of Cu(BO(2))(2) cluster. With an electron affinity of 5.07 eV which is larger than that of its BO(2) superhalogen (4.46 eV) building-block, Cu(BO(2))(2) can be classified as a hyperhalogen. Density functional theory based calculations were carried out to identify the ground state geometries and study the electronic structures of these clusters. Cu(BO(2)) and Cu(BO(2))(2) clusters were found to form chainlike structures in both neutral and anionic forms. Cu(2)(BO(2)) and Cu(2)(BO(2))(2) clusters, on the other hand, preferred a chainlike structure in the anionic form but a closed ringlike structure in the neutral form. Equally important, substantial differences between adiabatic detachment energies and electron affinities were found, demonstrating that correct interpretation of the experimental photoelectron spectroscopy data requires theoretical support not only in determining the ground state geometry of neutral and anionic clusters, but also in identifying their low lying isomers.  相似文献   

11.
CO adsorption on small cationic, neutral, and anionic (AlN)n (n = 1–6) clusters has been investigated using density functional theory in the generalized gradient approximation. Among various possible CO adsorption sites, an N on‐top (onefold coordinated) site is found to be the most favorable one, irrespective of the charge state of the clusters. The adsorption energies of CO on the anionic (AlN)nCO (n = 2–4) clusters are greater than those on the neutral and cationic complexes. The adsorption energies on the cationic and neutral complexes reflect the odd–even oscillations, and the adsorption energies of CO on the cationic (AlN)nCO (n = 5, 6) clusters are greater than those on the neutral and anionic complexes. The adsorption energies for the different charge states decrease with increasing cluster size. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

12.
Charged phosphorus-doped small silicon clusters, PSi n +/PSi n ? (n?=?1?8), have been investigated using the B3LYP/6-311+G* level Kohn?CSham density functional theory (KS-DFT) method. For comparison, the geometries of neutral PSi n clusters were also optimized at the same level, though most of them have been previously reported. According to our results, cationic PSi n + clusters have ground state structures similar to those of pure silicon clusters Si n+1, with the exception of n?=?5. For anionic PSi n ?, most of the lowest-energy structures are in accord with Wade??s 2N+2 rule for closed polyhedra: PSi4 ?, PSi5 ?, PSi6 ?, and PSi8 ?, respectively, favor the trigonal bipyramid, tetragonal bipyramid, pentagonal bipyramid, and tricapped trigonal prism (TTP) structures, corresponding to Wade??s 2N+2 rule with N?=?5, 6, 7, and 9. The structures tend to contract when the cationic species is reduced initially to the neutral species and subsequently to the anionic species, implying a strengthening interaction between atoms within the clusters on one and two electron reductions of the cationic species to the neutral and anionic species, respectively. The relative order of stability of the PSi n +/PSi n ? isomers differs from that of the PSi n isomers. Cluster stability was also analyzed by adiabatic ionization potentials (AIP), adiabatic electron affinities (AEA), binding energies (BE), second-order energy differences (?2E), and HOMO-LUMO gap values. The results indicate that PSi4 ? and PSi7 ? clusters are more stable than their neighboring anionic clusters and would be potential species for further mass spectrometric measurements.  相似文献   

13.
The stable structures, energies, and electronic properties of neutral, cationic, and anionic clusters of Al(n) (n = 2-10) are studied systematically at the B3LYP/6-311G(2d) level. We find that our optimized structures of Al5(+), Al9(+), Al9(-), Al10, Al10(+), and Al10(-) clusters are more stable than the corresponding ones proposed in previous literature reports. For the studied neutral aluminum clusters, our results show that the stability has an odd/even alternation phenomenon. We also find that the Al3, Al7, Al7(+), and Al7(-) structures are more stable than their neighbors according to their binding energies. For Al7(+) with a special stability, the nucleus-independent chemical shifts and resonance energies are calculated to evaluate its aromaticity. In addition, we present results on hardness, ionization potential, and electron detachment energy. On the basis of the stable structures of the neutral Al(n) (n = 2-10) clusters, the Al(n)O (n = 2-10) clusters are further investigated at the B3LYP/6-311G(2d), and the lowest-energy structures are searched. The structures show that oxygen tends to either be absorbed at the surface of the aluminum clusters or be inserted between Al atoms to form an Al(n-1)OAl motif, of which the Al(n-1) part retains the stable structure of pure aluminum clusters.  相似文献   

14.
Small neutral, anionic, and cationic silver cluster hydrides AgnH and anionic HAgnH (n=1-7) have been studied using the PW91PW91 density functional method. It was found that the most stable structure of the AgnH complex (neutral or charged) does not always come from that of the lowest energy bare silver cluster plus an attached H atom. Among various possible adsorption sites, the bridge site is energetically preferred for the cationic and most cases of neutral Agn. For anionic Agn, the top site is preferred for smaller Agn within n相似文献   

15.
Photoelectron spectroscopy (PES) is combined with density functional theory (DFT) to study the monochromium carbide clusters CrCn- and CrCn (n = 2-8). Well-resolved PES spectra were obtained, yielding structural, electronic, and vibrational information about both the anionic and neutral clusters. Experimental evidence was observed for the coexistence of two isomers for CrC2-, CrC3-, CrC4-, and CrC6-. Sharp and well-resolved PES spectra were observed for CrCn- (n = 4,6,8), whereas broad spectra were observed for CrC5- and CrC7-. Extensive DFT calculations using the generalized gradient approximation were carried out for the ground and low-lying excited states of all the CrCn- and CrCn species, as well as coupled-cluster calculations for CrC2- and CrC2. Theoretical electron affinities and vertical detachment energies were calculated and compared with the experimental data to help the assignment of the ground states and obtain structural information. We found that CrC2- and CrC3- each possess a close-lying cyclic and linear structure, which were both populated experimentally. For the larger CrCn- clusters with n = 4, 6, 8, linear structures are the overwhelming favorite, giving rise to the sharp PES spectral features. CrC7- was found to have a cyclic structure. The broad PES spectra of CrC5- suggested a cyclic structure, whereas the DFT results predicted a linear one.  相似文献   

16.
砷原子团簇结构的量子化学密度泛函理论研究   总被引:1,自引:0,他引:1  
采用密度泛函理论的三种方法:局域自旋密度近似SVWN、梯度修正BLYP、杂化密度泛函B3LYP,优化了中性Asn、负离子Asn-(n=2~5)的结构,在优化结构基础上计算了它们的振动光谱,获得它们稳定的最低能量态的结构.其中中性Asn(n=2~5)的稳定结构的计算结果,与已有的理论结果以及实验数据进行了比较.而对负离子Asn-(n=2~5))的稳定结构作了预言.同时计算了Asn(n=2~5)的绝热电子亲和能(EAa),与有关光电子谱学的实验值符合较好.  相似文献   

17.
Recently, we have proposed a microscopic model, describing the properties of open-shell, Jahn-Teller deformed monovalent-metal clusters [1]. The model is based on the self-consistent ground-state calculation, allowing the spheroidal (axial) deformation of the ionic jellium background, driven by the open-shell valence electron structure. The ground state electronic properties of such clusters are further investigated and compared to recent experimental data: ionization potentials, electron affinities and binding energies of neutral monomers to cationic clusters [2].  相似文献   

18.
The authors present theoretical results describing the adsorption of H2 and H2S molecules on small neutral and cationic gold clusters (Au(n)((0/+1)), n=1-8) using density functional theory with the generalized gradient approximation. Lowest energy structures of the gold clusters along with their isomers are considered in the optimization process for molecular adsorption. The adsorption energies of H2S molecule on the cationic clusters are generally greater than those on the corresponding neutral clusters. These are also greater than the H2 adsorption energies on the corresponding cationic and neutral clusters. The adsorption energies for cationic clusters decrease with increasing cluster size. This fact is reflected in the elongations of the Au-S and Au-H bonds indicating weak adsorption as the cluster grows. In most cases, the geometry of the lowest energy gold cluster remains planar even after the adsorption. In addition, the adsorbed molecule gets adjusted such that its center of mass lies on the plane of the gold cluster. Study of the orbital charge density of the gold adsorbed H2S molecule reveals that conduction is possible through molecular orbitals other than the lowest unoccupied molecular orbital level. The dissociation of the cationic Au(n)SH2+ cluster into Au(n)S+ and H2 is preferred over the dissociation into Au(m)SH2+ and Au(n-m), where n=2-8 and m=1-(n-1). H2S adsorbed clusters with odd number of gold atoms are more stable than neighboring even n clusters.  相似文献   

19.
The structure and properties of small neutral and cationic CrGen(0,+) clusters, with n from 1 to 5, were investigated using quantum chemical calculations at the CASSCF/CASPT2 and DFT/B3LYP levels. Smaller clusters prefer planar geometries, whereas the lowest-lying electronic states of the neutral CrGe4, CrGe5, and cationic CrGe5+ forms exhibit nonplanar geometries. Most of the clusters considered prefer structures with high-spin ground state and large magnetic moments. Relative to the values obtained for the pure Gen clusters, fragmentation energies of doped CrGen clusters are smaller when n is 3 and 4 and larger when n = 5. The averaged binding energy tends to increase with the increasing number of Ge atoms. For n = 5, the binding energies for Ge5, CrGe5, and CrGe5+ are similar to each other, amounting to approximately 2.5 eV. The Cr atom acts as a general electron donor in neutral CrGen clusters. Electron localization function (ELF) analyses suggest that the chemical bonding in chromium-doped germanium clusters differs from that of their pure or Li-doped counterparts and allow the origin of the inherent high-spin ground state to be understood. The differential DeltaELF picture, obtained in separating both alpha and beta electron components, is consistent with that derived from spin density calculations. For CrGen, n = 2 and 3, a small amount of d-pi back-donation is anticipated within the framework of the proposed bonding model.  相似文献   

20.
We present the results of a density functional calculation on adsorption of O2, CO, and their coadsorption at various sites of neutral, cationic, and anionic Pd4 clusters. For all the clusters, the dissociative adsorption of oxygen sitting on Pd bridge sites is found to be preferable. Both O2 and CO binding energies are found to be higher for the anionic Pd4 cluster followed by cationic and neutral cluster. However, binding energies of O2 or CO in the coadsorption complexes follow the trend: anionic > neutral > cationic. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号