首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene derivatives through intermolecular hydrogen bonding (H-bonding) between the carboxylic acid groups in the PSI100 and the imidazole rings in the azobenzene derivatives. The existence of H-bonding has been confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline (LC) polymers and exhibit stable mesophases. The LC behaviour of these H-bonded polymeric complexes was investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction. The complexes exhibit nematic LC phases identified on the basis of Schlieren optical textures. On increasing spacer length or the concentration of the H-bonded mesogenic unit in the complex, the clearing temperature and the temperature range of the LC phase of the polymeric complex increase. The terminal group plays a critical role in determining the LC properties of the polymeric complexes. A terminal methoxy group is more efficient than a nitro group in increasing the clearing temperature. The electron donor-acceptor interactions between the H-bonded mesogenic units containing methoxy and nitro terminal groups in supramolecular 'copolymeric' complexes lead to an increase in the clearing temperature and a wider temperature range for the LC phase.  相似文献   

2.
《Liquid crystals》2001,28(10):1527-1538
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene derivatives through intermolecular hydrogen bonding (H-bonding) between the carboxylic acid groups in the PSI100 and the imidazole rings in the azobenzene derivatives. The existence of H-bonding has been confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline (LC) polymers and exhibit stable mesophases. The LC behaviour of these H-bonded polymeric complexes was investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction. The complexes exhibit nematic LC phases identified on the basis of Schlieren optical textures. On increasing spacer length or the concentration of the H-bonded mesogenic unit in the complex, the clearing temperature and the temperature range of the LC phase of the polymeric complex increase. The terminal group plays a critical role in determining the LC properties of the polymeric complexes. A terminal methoxy group is more efficient than a nitro group in increasing the clearing temperature. The electron donor-acceptor interactions between the H-bonded mesogenic units containing methoxy and nitro terminal groups in supramolecular 'copolymeric' complexes lead to an increase in the clearing temperature and a wider temperature range for the LC phase.  相似文献   

3.
合成了17个未见报道的中心桥连基为酯基、C==N基,分别含有3-4个苯环,不同刚性实长度以及不同末端链长度的二茂铁化合物,并通过DSC和偏光显微镜对其介晶性进行了表征.研究表明,末端长度对相变温度和清亮温度均有影响,但对相变温度范围影响较小,而刚性实长度对其影响却很大.当刚性实达到一定长度时,末端为H原子也具有介晶性---这是第一个无柔性末端链的金属有机液晶化合物.  相似文献   

4.
《Liquid crystals》2001,28(2):191-195
The preparation, characterization and mesomorphic properties of vanadyl(VI) and cobalt(II) complexes derived from N , N -bis[3-(3,4-dialkoxyphenyl)-3-oxopropenyl]ethylenediamines are described. These half-disk-shaped molecules exhibited columnar mesophases over a wide range of temperature, as characterized by DSC analysis and polarizing optical microscopy. The structure of the mesophases was also confirmed as columnar hexagonal (Colho) by powder XRD. The vanadyl complexes were found to have substantially higher clearing temperatures and wider mesophase temperatures than the analogous cobalt complexes. The influence of the metal centres on the mesomorphic temperatures may be attributed to better intermolecular dative association in the vanadyl complexes than in the cobalt complexes.  相似文献   

5.
The preparation, characterization and mesomorphic properties of vanadyl(VI) and cobalt(II) complexes derived from N, N -bis[3-(3,4-dialkoxyphenyl)-3-oxopropenyl]ethylenediamines are described. These half-disk-shaped molecules exhibited columnar mesophases over a wide range of temperature, as characterized by DSC analysis and polarizing optical microscopy. The structure of the mesophases was also confirmed as columnar hexagonal (Colho) by powder XRD. The vanadyl complexes were found to have substantially higher clearing temperatures and wider mesophase temperatures than the analogous cobalt complexes. The influence of the metal centres on the mesomorphic temperatures may be attributed to better intermolecular dative association in the vanadyl complexes than in the cobalt complexes.  相似文献   

6.
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene-based derivatives through intermolecular hydrogen bonding between the carboxylic acid groups of PSI100 and the imidazole rings in the azobenzene-based derivatives. The presence of H-bonding was confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline polymers and exhibit nematic mesophases identified on the basis of the observation of Schlieren textures. The mesogenic behaviour of these complexes was studied by polarizing optical microscopy and X-ray diffraction. The thermal behaviour of the complexes was investigated by differential scanning calorimetry. On increasing the spacer length, the transition temperatures initially increase. A further increase in spacer length, however, leads to a decrease in the transition temperatures. The electron donor-acceptor interaction between unlike mesogenic units in supramolecular copolymeric complexes helps to stabilize the mesophase.  相似文献   

7.
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene-based derivatives through intermolecular hydrogen bonding between the carboxylic acid groups of PSI100 and the imidazole rings in the azobenzene-based derivatives. The presence of H-bonding was confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline polymers and exhibit nematic mesophases identified on the basis of the observation of Schlieren textures. The mesogenic behaviour of these complexes was studied by polarizing optical microscopy and X-ray diffraction. The thermal behaviour of the complexes was investigated by differential scanning calorimetry. On increasing the spacer length, the transition temperatures initially increase. A further increase in spacer length, however, leads to a decrease in the transition temperatures. The electron donor-acceptor interaction between unlike mesogenic units in supramolecular copolymeric complexes helps to stabilize the mesophase.  相似文献   

8.
在三苯基膦钯的催化下,由3-氯-3-甲氧基哒嗪与对烷氧苯基硼酸偶联合成了7种具有液晶性的中心桥连基为哒嗪环,不同烷氧基长度的含有苯环的哒嗪衍生物,并通过DSC和偏光显微镜对其介晶性进行了表征。研究表明,末端链长度对相变温度和清亮点温度均有影响,但对相变温度的影响较小。  相似文献   

9.
合成了16个中心桥连基为哒嗪环、酯基或CH=N基,含有苯环、不同刚性实长度和不同末端链长的哒嗪化合物,并通过DSC对其介晶进行了表征。研究表明,末端链长度对相变温度和清亮点温度均有影响,但对相变温度范围影响较小,而刚性实长度对其影响却较大。  相似文献   

10.
A series of transition metal (Ni, Cu, Pd) complexes derived from macrocyclic tetrabenzo[b,f,j,n] [1,5,9,13]tetraazacyclohexadecine (TAAB) was synthesized and their mesomorphic properties studied by differential scanning calorimetry, polarized optical microscopy and X-ray powder diffraction (XRD). These compounds have eight alkoxy side chains attached around the central molecular core and form disc-like molecules. All the derivatives exhibited columnar mesophases over a wide range of temperature. The mesomorphic behaviour was found to be dependent on the incorporated metal and the carbon length of the alkoxy side chains. The clearing temperatures decreased in the order M = Ni > Pd > Cu; this decrease was probably due to the size of the metal ions. Some derivatives with shorter side chains (n = 10, 12) were room temperature liquid crystals. All compounds were found to exhibit hexagonal columnar (Colh) phases which were confirmed by powder XRD.  相似文献   

11.
Supramolecular side chain liquid crystalline polymers (SCLCPs) based on poly(3-carboxypropylmethylsiloxane-co-dimethylsiloxane) (PSIX, X=100, 76, 60, 41 or 23, denoting the mole percentage of 3-carboxypropylmethylsiloxane unit in the polymer) and stilbazole derivatives have been obtained through intermolecular hydrogen bonding (H-bonding) interactions between the carboxylic acid and the pyridyl moieties. The formation of H-bonding and self-assembly results in the formation of new mesogenic units, in which H-bonds function as molecular connectors. FTIR shows the existence of H-bonding in the complexes. The polymeric complexes behave as single component liquid crystalline polymers and exhibit stable and enantiotropic mesophases. The liquid crystalline properties of the supramolecular SCLCPs were studied using differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction, and were found to exhibit smectic A phases with focal-conic textures. The thermal stability of the SCLCP increases on increasing the carboxylic acid content in the polysiloxane and the concentration of the stilbazole derivative in the complex. However, the thermal stability decreases on increasing the chain length of the stilbazole derivative. The crystal phase was not formed even on cooling to the glass transition temperature of the polymeric complex.  相似文献   

12.
Phase diagrams of binary mixtures of the non-mesogenic N -( p -methoxy- o -hydroxybenzylidbe ene)- p -aminopyridine with a series of p - n -alkoxybenzoic acids ranging from methoxy to hexadecyloxy were established using differential scanning calorimetry and polarising optical microscopy. The key results obtained are: (1) the formation of 1 1 hydrogen bonded complexes between the pyridine derivative and the alkoxybenzoic acids, (2) the stability of the alkoxybenzoic acid mesophases over a wide range of compositions (up to slightly over 50 mol% of the pyridine derivative), (3) the absence of additional mesophases corresponding specifically to the 1 1 complexes, and (4) the complete miscibility of the acids with the complexes in the mesomorphic state. With alkoxy chains from methoxy to heptyloxy, mixtures produce only nematic phases; they produce both nematic and smectic phases with chains from octyloxy to dodecyloxy, and only smectic phases with chains from tetradecyloxy to hexadecyloxy. The formation of hydrogen bonded complexes was investigated at various temperatures using FTIR spectroscopy. Molecular ordering was studied by X-ray diffraction as a function of temperature and composition both for the crystalline and the mesomorphic states.  相似文献   

13.
Supramolecular side chain liquid crystalline polymers (SCLCPs) based on poly(3-carboxypropylmethylsiloxane-co-dimethylsiloxane) (PSIX, X=100, 76, 60, 41 or 23, denoting the mole percentage of 3-carboxypropylmethylsiloxane unit in the polymer) and stilbazole derivatives have been obtained through intermolecular hydrogen bonding (H-bonding) interactions between the carboxylic acid and the pyridyl moieties. The formation of H-bonding and self-assembly results in the formation of new mesogenic units, in which H-bonds function as molecular connectors. FTIR shows the existence of H-bonding in the complexes. The polymeric complexes behave as single component liquid crystalline polymers and exhibit stable and enantiotropic mesophases. The liquid crystalline properties of the supramolecular SCLCPs were studied using differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction, and were found to exhibit smectic A phases with focal-conic textures. The thermal stability of the SCLCP increases on increasing the carboxylic acid content in the polysiloxane and the concentration of the stilbazole derivative in the complex. However, the thermal stability decreases on increasing the chain length of the stilbazole derivative. The crystal phase was not formed even on cooling to the glass transition temperature of the polymeric complex.  相似文献   

14.
In an effort to control the phase ranges of highly ordered smectic phases, we examined the impact of molecular symmetry on phase behaviour of a series of 12 symmetrical and unsymmetrical 4,4′-dialkanoyloxybiphenyl derivatives. Combined differential scanning calorimetry, polarised optical microscopy, and X-ray diffraction studies indicated that the compounds studied formed smectic F liquid crystals, and in some cases, G phases at lower temperatures. Although the clearing temperatures were largely unaffected by molecular symmetry, the transitions from the SmF liquid crystals to more ordered phases were consistently lowered upon reducing the molecular symmetry. As a result, unsymmetrical molecules had broader mesophases than their higher symmetry isomers, suggesting a strategy for tuning the phase behaviour of these highly ordered lamellar phases, which have been widely targeted for organic semiconductors.  相似文献   

15.
A series of thermotropic hydrogen-bonded liquid crystalline structures based on 4,4′-bipyridyl and aliphatic carboxylic acids was prepared by a mechanosynthesis technique. This series was characterised by polarising optical microscope, differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray powder diffraction and 1H NMR relaxometry experimental techniques. In these complexes, the bipyridyl component, a non-mesogenic substance by itself, acts as a double H-bond acceptor, whereas the alkylbenzoic acid acts as a H-bond donor, in a 1:2 proportion. The so-formed complexes exhibit mesophases that are not observed by the single components. A characteristic phase (smectic A) is identified and shown to be affected by the alkyl chain length. The isotropisation temperature is increased by the supramolecular aggregation through the H-bonds.  相似文献   

16.
Hydrogen-bonded liquid crystalline complexes have been obtained through 1:1 (molar ratio) complexation of 4- n -alkoxycinnamic acids ( n CNA: n = 4, 8, 10, 12, where n is the number of carbons in the alkyloxy chain) and trans -4-octyloxystilbazole (8Sz). These hydrogen-bonded complexes ( n CNA8Sz) form stable mesophases. The mesomorphic range was extended by the mixing of complexes. Hexatic modification of smectic B (SmB h ), smectic C (SmC), smectic A (SmA), and nematic mesophases of these complexes were determined by a combination of X-ray diffraction and polarizing optical microscopy. Transitions between the various smectic phases were deduced from the temperature-dependent layer spacing of n CNA8Sz. The layer spacing of these complexes in the SmB h and SmA phases gradually increased with increasing alkoxy chain length. The favouring of smectic phases in these complexes is believed to originate from the increment of polarity of the mesogen by intermolecular H-bonding.  相似文献   

17.
以不具有液晶行为的2,6-二[N,N′-二-(4-烷基苯甲酰基)]氨基吡啶(A系列)和4-正烷氧基苯甲酸(D系列)作为氢键液晶复合物的单体,组装成T-型氢键液晶系列复合物(AmDn)。用红外光谱对其结构进行了表征,用DSC及偏光显微方法对其液晶行为进行了研究。结果表明:所合成的21种复合物分子间存在氢键且都具有向列相。通过调整2,6-二[N,N′-二-(4-烷基苯甲酰基)]氨基吡啶分子上柔性烷基的长度和极性,可以有效地调节它与4-烷氧基苯甲酸形成的氢键复合物的液晶相变温度以及液晶态的稳定性;增加2,6-二[N,N′-二-(4-烷基苯甲酰基)]氨基吡啶分子上柔性烷基的长度,其复合物AmDn的液晶相温度范围趋于变窄,清亮点逐渐下降,其液晶态稳定性也逐渐下降;以2,6-二[N,N′-二-(4-烷基苯甲酰基)]氨基吡啶分子替代2,6-二[N,N′-二-(4-烷氧基苯甲酰基)]氨基吡啶分子,可以降低分子的极性,使其单体的熔点及其氢键复合物AmDn的相变温度下降。  相似文献   

18.
含薄荷基的手性液晶单体的合成、结构与性能研究   总被引:1,自引:0,他引:1  
胡建设  刘聪  孟庆宝  王翔 《化学学报》2009,67(14):1668-1674
合成了五种新型含薄荷基的手性单体(M1~M5), 它们的结构、纯度及旋光性质通过了1H NMR, FT-IR、元素分析仪及旋光仪等手段的表征, 采用DSC, POM, UV/Vis/NIR等研究了单体的介晶性能、相行为及选择反射性能. 结果表明: 单体的比旋光度值随苯环数目的增加而降低, 通过在薄荷基与液晶核之间引入柔性间隔基元, 实现了含薄荷基单体具有液晶性能的目的. 除M1外, 其余四种单体均呈现手性近晶C (SC*)相和胆甾(Ch)相, 此外M5还出现了蓝相织构. M2~M4只在SC*相区能观察到选择反射现象, 而M5在SC*相区和Ch相区均出现明显的选择反射现象, 且随温度的升高, SC*相区的反射波长发生“红移”, 而Ch相区的反射波长则发生“蓝移”. 随着液晶核刚性的增加, 对应单体的熔点和清亮点增大, 液晶相范围变宽. 液晶核中的酯基桥键与组合方式也对单体的熔点和清亮点具有一定的影响.  相似文献   

19.
Hydrogen-bonded liquid crystalline complexes have been obtained through 1:1 (molar ratio) complexation of 4-n-alkoxycinnamic acids (nCNA: n = 4, 8, 10, 12, where n is the number of carbons in the alkyloxy chain) and trans-4-octyloxystilbazole (8Sz). These hydrogen-bonded complexes (nCNA8Sz) form stable mesophases. The mesomorphic range was extended by the mixing of complexes. Hexatic modification of smectic B (SmBh), smectic C (SmC), smectic A (SmA), and nematic mesophases of these complexes were determined by a combination of X-ray diffraction and polarizing optical microscopy. Transitions between the various smectic phases were deduced from the temperature-dependent layer spacing of nCNA8Sz. The layer spacing of these complexes in the SmBh and SmA phases gradually increased with increasing alkoxy chain length. The favouring of smectic phases in these complexes is believed to originate from the increment of polarity of the mesogen by intermolecular H-bonding.  相似文献   

20.
The synthesis of semiflexible main chain polyesters with cross-shaped mesogens and their phase behaviour, investigated by polarizing microscopy, DSC and X-ray diffraction, is presented. Polyesters of this type show mesophases with dominating nematic character and relatively high clearing temperatures. Systematic variation of the spacer and the terminal groups of the mesogens shows that longitudinally fixed rod-like parts of the mesogens have a strong influence on the clearing temperature and, therefore, on the mesophase behaviour. The corresponding rod-like but laterally fixed parts of the cross-shaped mesogens influence the melting temperatures significantly. This is critical in determining crystallization. However, laterally fixed rod-like parts contribute also to the formation of mesophases, but clearly to a far less extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号