首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unsaturated heteropolyanions (HPA) [PW11O39]7− stabilize TiIV hydroxo complexes in aqueous solutions (Ti: PW11 [PW11O39]7−⪯12, pH 1–3). Spectral studies (optical,17O and31P NMR, and IR spectra) and studies by the differential dissolution method demonstrated that TiIV hydroxo complexes are stabilized through interactions of polynuclear TiIV hydroxo cations with heteropolyanions [PW11TiO40 5− formed. Depending on the reaction conditions, hydroxo cations Ti n−1O x H y m+ either add to oxygen atoms of the W−O−Ti bridges of the heteropolyanions to form the complex [PW11TiO40·Ti n−1O x H y ] k− (at [HPA]=0.01 mol L−1) or interact with TiIV of the heteropolyanions through the terminal o atom to give the polynuclear complexes [PW11O39Ti−O−Ti n−1O x H y ]q− (at [HPA]=0.2 mol L−1). When the complexes of the first type were treated with H2O2, TiIV ions added peroxo groups. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 914–920, May, 1997.  相似文献   

2.
Using the layer-by-layer technique, carbon submicroparticles, that have been modified and stabilized with monolayers of Keggin-type phosphododecamolybdate (PMo12O403−), can be dispersed in multilayer films of organic polymers, poly(3,4-ethylenedioxythiophene), i.e., PEDOT, or poly(diallyldimethylammonium) chloride, i.e., PDDA, deposited on glassy carbon or indium-tin oxide conductive glass electrodes. The approach involves alternate treatments in the colloidal suspension of PMo12O403−-covered carbon submicroparticles in the solution of monomer, 3,4-ethylenedioxythiophene or in solution of PDDA polymer. Electrostatic attractive interactions between anionic phosphomolybdate-modified carbon submicroparticles and cationic polymer layers permit not only uniform and controlled growth of the hybrid organic–inorganic film but also contribute to its overall stability. The system composed of PMo12O403−-covered carbon submicroparticles dispersed in PEDOT is characterized by fast dynamics of charge transport and has been used to construct symmetric microelectrochemical redox capacitor. The PDDA-based system has occurred to be attractive for electrocatalytic reduction of hydrogen peroxide.  相似文献   

3.
Shape selective catalytic behaviour of a platinum-promoted polyoxometalate, 0.5 wt% Pt−Cs2.1H0 9PW12O40, has been studied for complete oxidation of methane and benzene. The pore size of this catalyst determined by adsorptions of n-butane and isobutane was close to the molecular size of n-butane (0.43 nm). Ar and N2 porosimetries demonstrated that 0.5 wt% Pt−Cs2 1H0 9PW12O40 possesses unimodal distribution of pores in ultramicropore region. External surface area was estimated to be less than 3% that of the total surface area (61 m2 g−1) of the catalyst. Owing to the restricted pores, this exhibited efficient shape selectivity; methane (molecular size; 0.38 nm) was readily oxidized, while the oxidations of the larger molecule such as benzene (0.59 nm) were greatly suppressed. These results indicate that 0.5 wt% Pt−Cs2 1H0 9PW12O40 is a promising microporous catalyst.  相似文献   

4.
A [C8mim]3PMo12O40-modified ionic liquid carbon paste electrode ([C8mim]3PMo12O40-ILCPE, C8mim = 1-methyl-3-octylimidazolium) was successfully fabricated. Its electrochemical properties were carried out on the cyclic voltammograms. The results of the cyclic voltammograms indicated that [C8mim]3PMo12O40-ILCPE exhibited remarkable electrocatalytic activities toward the reduction of BrO3 and good stability. The value of Ipc was as a function with the concentration of bromate from 2 × 10−6 to 1 × 10−4 M, which indicated that the [C8mim]3PMo12O40-ILCPE can be a candidate for electrochemical sensor.  相似文献   

5.
Two new phosphatotungstates containing Keggin clusters, [Cu(2,2′-bipy)2]5[PW12O40] · 2H2O (1) (2,2′-bipy = 2,2′-bipyridine) and (Hpip)3[PW12O40] (2) (pip = piperazine) have been hydrothermally synthesized and characterized by IR, element analysis and cyclic voltammogram. Compound 1 consists of one discrete Keggin polyanion [PW12O40]5?, five isolated complex cations [Cu(2,2′-bipy)2]+ and two water molecules. The organic moieties exhibit regular packing with offset aromatic–aromatic interactions between the bipys, leading to a compact supramolecular framework structure. Compound 2 is made up of one discrete Keggin polyanion [PW12O40]3? and three pip cations. Compounds 1 and 2 were employed to fabricate bulk-modified carbon paste electrode to research on their electrochemistry properties. Their electrochemical behaviors and electrocatalysis that 1- and 2-CPEs have electrocatalytic activities toward the oxidation of nitrite. Compound 1 is in the orthorhombic system, space group Pna21, with a = 28.1928(9), b = 21.5479(6), c = 19.9088(6) Å, V = 12,094.5(6) Å3 and Z = 4. Compound 2 is in the rhombohedral system, space group R $ \overline{3} Two new phosphatotungstates containing Keggin clusters, [Cu(2,2′-bipy)2]5[PW12O40] · 2H2O (1) (2,2′-bipy = 2,2′-bipyridine) and (Hpip)3[PW12O40] (2) (pip = piperazine) have been hydrothermally synthesized and characterized by IR, element analysis and cyclic voltammogram. Compound 1 consists of one discrete Keggin polyanion [PW12O40]5−, five isolated complex cations [Cu(2,2′-bipy)2]+ and two water molecules. The organic moieties exhibit regular packing with offset aromatic–aromatic interactions between the bipys, leading to a compact supramolecular framework structure. Compound 2 is made up of one discrete Keggin polyanion [PW12O40]3− and three pip cations. Compounds 1 and 2 were employed to fabricate bulk-modified carbon paste electrode to research on their electrochemistry properties. Their electrochemical behaviors and electrocatalysis that 1- and 2-CPEs have electrocatalytic activities toward the oxidation of nitrite. Compound 1 is in the orthorhombic system, space group Pna21, with a = 28.1928(9), b = 21.5479(6), c = 19.9088(6) ?, V = 12,094.5(6) ?3 and Z = 4. Compound 2 is in the rhombohedral system, space group Rc, with a = 17.9191(5), c = 23.7439(9) ?, V = 6,602.6(4) ?3 and Z = 6. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
A new Keggin-type polyoxometalate-based compound {[Cu2(L)4(H2O)4](PW11VIWVO40)}·16H2O (1) constructed from PW11VIWVO40 4−, N,N′-bis(4-pyridylformyl) piperazine (L) and Cu(II) has been hydrothermally synthesized and structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analysis. Single-crystal X-ray diffraction analysis reveals that the semi-rigid piperazine-based ligands L coordinate to the Cu(II) atoms to constitute a two dimensional coordination network. The 2D (4, 4) cationic layers are stacked together in a perpendicular mode, resulting in the formation of twofold interpenetrating frameworks with large cavities. The PW12 anions reside in the large cubic-like cavities, serving as non-coordinating templates. The compound 1 displays good electrocatalytic activity toward the reduction of nitrite in 1 M H2SO4 aqueous solution.  相似文献   

7.
The electrochemical transfer behaviour of vanadium-containing heteropolytungstate anions [PW12−xVxO40](3+x)− (x = 1−4) across the water | nitrobenzene interface has been investigated by cyclic voltammetry and chronopotentiometry with cyclic linear current scanning. The transfer of PW11V1O4−40, HPW10V2O4−40, H2PW10V2O3−40, H3PW9V3O3−40 and H4PW8V4O3−40 across the water | nitrobenzene interface can be observed within the potential window. The effects were observed of pH in the water phase on the transfer behaviour and the formation of vanadium-containing heteropolytungstate anions in solution. Heteropolytungstate anions become more stable due to their involving the vanadium atom. The degree of protonation and the dissociation constant of the trivalent vanadium-containing heteropolytungstate anion of protonation increase with increasing vanadium content. The transfer processes are diffusion-controlled. The standard transfer potential, the standard Gibbs energy and the dissociation constant for vanadium-containing heteropolytungstate anions have been obtained and the transfer mechanisms are discussed.  相似文献   

8.
Three novel heteropolytungstates, [Cu(phen)2]4[α-SiW12O40] (1), [Cu4(4,4′-bpy)3(2,2′-bpy)4][α-SiW12O40] · H2O (2) and [Cu(4,4′-bpy)(4,4′-Hbpy)0.5]2[PW12O40] (3) (phen = 1,10-phenanthroline, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine), have been synthesized and characterized by elemental analyses, IR, TG analyses and single-crystal X-ray diffraction. Compound (1) exhibits interesting chiral layer constructed from interperpendicular helical chains running along a crystallographic 21 axis in the c and a directions. Furthermore, the chiral layers are connected by the [α-SiW12O40]4− anions via hydrogen bonding interactions to form a 3D superamolecular structure. The [Cu4(4,4′-bpy)3(2,2′-bpy)4]4+ coordinated complexes in compound (2) are packed together via the aromatic π–π stacking interactions and exhibit an interesting 3D sandglasslike “host” network with 1D channels, in which [α-SiW12O40]4− anions “guests” reside. Compound (3) has a unique 2D superamolecular network, which is composed of cationic CuI coordination polymer chains and discrete [PW12O40]3− polyoxoanions as linkers. It is noteworthy that the monprotonated 4,4′-bpy ligands of (3) act as arms and connect the adjacent 2D network, generating a 3D interpenetrating superamolecular structure.  相似文献   

9.
A novel hydrogen peroxide (H2O2) biosensor was developed by immobilizing hemoglobin on the gold colloid modified electrochemical pretreated glassy carbon electrode (PGCE) via the bridging of an ethylenediamine monolayer. This biosensor was characterized by UV-vis reflection spectroscopy (UV-vis), electrochemical impendence spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized Hb exhibited excellent electrocatalytic activity for hydrogen peroxide. The Michaelis–Menten constant (K m) was 3.6 mM. The currents were proportional to the H2O2 concentration from 2.6 × 10−7 to 7.0 × 10−3 M, and the detection limit was as low as 1.0 × 10−7 M (S/N = 3).  相似文献   

10.
Cholesterol oxidase (ChOx), cholesterol esterase (ChEt), and horseradish peroxidase (HRP) have been co-immobilized covalently on a self-assembled monolayer (SAM) of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTS) deposited on an indium–tin–oxide (ITO) glass surface. These enzyme-modified (ChOx-ChEt-HRP/AEAPTS/ITO) biosensing electrodes have been used to estimate cholesteryl oleate from 10 to 500 mg dL−1. The sensitivity, K m value, and shelf-life of these ChEt-ChOx-HRP/AEAPTS/ITO biosensing electrodes have been found to be 124 nA mg−1 dL, 95.098 mg dL−1 (1.46 mmol L−1), and ten weeks, respectively. The ChEt-ChOx-HRP/AEAPTS/ITO bio-electrodes have been used to estimate total cholesterol in serum samples. Figure Covalent immobilization of enzymes onto AEAPTS/ITO surface using EDC/NHS chemistry Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Two charge-transfer (CT) salts based on the ferrocenyl cation CpFeCpCH2N+(CH3)3 and Keggin-type anion [PW12O40]3− or [SiMo12O40]4− with the ratio of ferrocenyl:polyanion of 3:1 or 4:1, [CpFeCpCH2N(CH3)3]3[PW12O40] (1) and [CpFeCp-CH2N+(CH3)3]4[SiMo12O40] (2), were synthesized in high yields (68–71%) by traditional solution synthetic method and their structures were determined by X-ray diffraction analysis. The two salts both crystallize in triclinic space group P[`1] P\overline{1} and show the close interaction of the cyclopentadienyl ligand with the surface of the polyoxometalate. The UV–Vis diffuse reflectance spectra of 1 and 2 in the solid state indicate the presence of a new absorption band at λ max = 550 and 630 nm, respectively, attributed to charge-transfer transitions between the ferrocenyl donors and the POM acceptors. The large difference of the shapes and positions of fluorescence emission bands of salts from the start materials also suggested the occurrence of a charge transfer process between the ferrocenyl cation and polyanion.  相似文献   

12.
Electroless and electroplated nickel electrodes are extensively used for hydrogen evolution reaction (HER). In the present work, TiO2-supported IrO2 mixed oxide composite was prepared and used to reinforce Ni–P electroless plates to be used as catalytic electrodes for HER. The electrodes exhibited high electrocatalytic activity when the electrodes were used for HER. All the parameters including particle size of the catalyst, surface roughness, and surface active sites were studied. The particle size of the IrO2 catalyst in the mixed oxide was found to have high influence on the catalytic activity of the electrodes. Low overpotential as low as 70 mV at a current density of 200 mA cm−2 was achieved with the mixed oxide-reinforced Ni–P electrodes.  相似文献   

13.
A novel electrode was prepared by implanting NH2 + into an ITO film (NH2/ITO). Gold nanoparticles were deposited on the surface of NH2/ITO electrode. The NH2/ITO and Au/NH2/ITO electrodes were used to determine hemoglobin (Hb) immobilized on the electrodes surfaces. The relationship of the reductive peak current value of Hb among different electrodes was: Hb/ITO:Hb/Au/ITO:Hb/NH2/ITO:Hb/Au/NH2/ITO=1:1.5:2:4. The linkage between the –NH2 implanted into ITO film and the –COOH of Hb was recognized to be the reason for the increase of active Hb coverage on NH2/ITO electrode compared with the ITO electrode. Increase of active Hb coverage on Au/NH2/ITO compared with Au/ITO was attributed to the different amount of gold nanoparticles deposited. The determination of Hb at an Au/NH2/ITO electrode was optimized. Calibration curve was obtained over the range of 1.0 × 10−8 – 1.0 × 10−6 mol · L−1 with a detection limit of 1.0 × 10−8 mol · L−1. Results showed that the novel NH2/ITO and Au/NH2/ITO electrodes exhibited good stability, reproducibility besides better electrochemical performance. Correspondence: Jing Bo Hu, Department of Chemistry, Beijing Normal University, Beijing 100875, China  相似文献   

14.
Summary Two novel charge-transfer (CT) heteropoly complexes, (C8H12N2)5H7PMo12O40 (1) and (C8H12N2)3H3-PMo12O40·5H2O (2), prepared by reacting p-Me2NC6H4NH2 with the four-electron heteropoly blue H7PMo12O40·12H2O and heteropoly acid H3PMo12O40· xH2O, respectively, were characterized by elemental analysis, and u.v., i.r., XPS and e.s.r. spectroscopies. A sizable electron-transfer interaction occurs within the product molecules and the heteropoly anions retain their Keggin structure. Their third-order optical non-linearity coefficients were measured using the Z-scan technique at a concentration of 4.68 × 10−6 mol dm−3 for (1) and 2.79 × 10−6 mol dm−3 for (2), with I 0 = 2.38 × 1013 w m−2 and λ = 532nm. The |χ(3)| for (1) is 2.61 × 10−10 esu and |χ(3)| for (2) is 1.05 × 10−10 esu.  相似文献   

15.
In this study, we modified carbon nanotubes (CNTs) by grafting with poly(ethylene glycol) (PEG) using the “grafting to” method. The PEG-grafted CNT (CNT-g-PEG) was cast on indium tin oxide (ITO) electrode to investigate the electrocatalytic activity of CNT to the redox reactions of the Fe(CN)63−/4−as a probe using cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic activity of CNT was correlated with CNT dispersion in the cast film on ITO as a function of pH of aqueous solution from which the film was cast. The CNT dispersions in aqueous solutions of different pH and in the cast films were examined by visual observation and zeta potential, scanning electron microscopy and transmission electron microscopy, respectively. At a pH in the range of 3–11 at which ITO electrode was modified, two functionalized CNT (fCNT and CNT-g-PEG) were both found to electrocatalyze the redox reactions of the Fe(CN)63−/4−probe and the PEG grafts in CNT-g-PEG could help CNT adhere to the electrode to obtain durable modified electrode. The more uniform CNT dispersions in aqueous solutions and in the cast films appeared to have greater electrocatalytic acitivity.  相似文献   

16.
H3PMo12−XWXO40 (X=0−12) and H6P2Mo18−XWXO62 (X=0−18) heteropolyacid catalysts were applied to the direct preparation of dichloropropanol from glycerol. Acid properties of the catalysts were determined by NH3-TPD measurements. The catalytic performance increased with increasing acid strength of the catalyst. Among the catalysts tested, the H3PW12O40 catalyst of highest acid strength showed the best catalytic performance.  相似文献   

17.
Surface-active cations (A+) in an aqueous medium, at pH 1.0 with excess phosphotungstic acid, form compounds with the composition A3[PW12O40]; but at pH 4.5, they form acid salts AnH7−n[PW11O39]·xH2O that have a nanoperiodic structure. The structural parameters are greatly dependent on the nature of the surfactant and on the type of heteropolyion. L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 Prospect Nauki, Kiev 252039, Ukraine. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 34, No. 4, pp. 250–256, July–August, 1998.  相似文献   

18.
Heteropoly acids Cs x H3 − x PW12O40 · nH2O with different cesium content are synthesized as nanostructured compositions. Their actual composition and specific surface are determined, microstructure studied and proton conductivity measured. Composite electrocatalytic systems based on platinized cesium salt of phosphorus-tungsten heteropolyacid Cs2.3H0.7PW12O40 · nH2O are prepared with admixture of Vulcan XC-72 carbon black. Mixed electronic-ionic conduction of the composite systems with different carbon black content is studied. Platinum-based nanostructured electrocatalyst based on the Cs2.3H0.7PW12O40 · nH2O-materials as support is synthesized and studied. The possible effective using of the studied nanocomposite as electrode for low-temperature hydrogen-air fuel cells is demonstrated. Electrochemical studies of catalytic properties of the Pt-Cs2.3H0.7PW12O40 · nH2O-C-electrodes in hydrogen and air are carried out by example of the prepared materials with different carbon black content.  相似文献   

19.
Two coordination polymers based on vanadium-substituted Keggin polyoxotungstophosphates as bridging ligands, {[Ni(4,4′-bipy)1.5(OH)(H2O)]2[H3PW10V2O40]}·4H2O (4,4′-bpy = 4,4′-bipyridine) 1 and {[Ni(dpa)2][Ni(dpa)(H2O)3]2[PW9V3O40]}·4H2O (dpa = 2,2′-dipyridylamine) 2, have been obtained by hydrothermal reactions and characterized by elemental analysis, IR, XRD, TGA and single-crystal X-ray Diffraction analysis. Compound 1 is a 2D layered structure built from 1D infinite zigzag {Ni2(4,4′-bipy)3(OH)2(H2O)2}n2+ chains bridged via [H3PW10V2O40]2− anions. Compound 2 exhibits a one-dimensional chain-like structure constructed from [Ni(dpa)2]2+ fragments bridged via bis-supported Keggin polyoxoanions [Ni(dpa)(H2O)3]2[PW9V3O40]2−. The two examples demonstrate that vanadium-substituted Keggin polyoxometalates have greater coordination capability.  相似文献   

20.
Heteropoly acid (HPA) H8(PW11TiO39)2xH2O (I) is synthesized by three different ways and studied by chemical analysis, potentiometric titration, mass-spectrometry, IR, 31P, 183W, and 17O NMR spectroscopy, thermogravimetry, and transmission electron microscopy. Anion I consists of two subparticles of the Keggin structure bridged by Ti-O-Ti. The dimeric anion exists in HPA aqueous solutions at [I] > 0.02 M. At pH > 0.6 it splits to a [PW11TiO40]5− monomer stable up to pH ∼ 6. When heated (150–400)°C, I splits into H3PW12O40 and, apparently, H3PW10Ti2O38 without phase separation. Thermolysis products are soluble and when dissolved in water turn again into I. Complete decomposition of I to oxides occurs at ∼450°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号