首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The magnetic interaction and spin transfer via phosphorus have been investigated for the tri‐tert‐butylaminoxyl para‐substituted triphenylphosphine oxide. For this radical unit, the conjugation existing between the π* orbital of the NO group and the phenyl π orbitals leads to an efficient delocalization of the spin from the radical to the neighboring aromatic ring. This has been confirmed by using fluid solution high‐resolution EPR and solid state MAS NMR spectroscopy. The spin densities located on the atoms of the molecule could be probed since 1H, 13C, 14N, and 31P are nuclei active in NMR and EPR, and lead to a precise spin distribution map for the triradical. The experimental investigations were completed by a DFT computational study. These techniques established in particular that spin density is located at the phosphorus (ρ=?15×10?3 au), that its sign is in line with the sign alternation principle and that its magnitude is in the order of that found on the aromatic C atoms of the molecule. Surprisingly, whereas the spin distribution scheme supports ferromagnetic interactions among the radical units, the magnetic behavior found for this molecule revealed a low‐spin ground state characterized by an intramolecular exchange parameter of J=?7.55 cm?1 as revealed by solid state susceptibility studies and low temperature EPR. The X‐ray crystal structures solved at 293 and 30 K show the occurrence of a crystallographic transition resulting in an ordering of the molecular units at low temperature.  相似文献   

2.
Walker FA 《Inorganic chemistry》2003,42(15):4526-4544
Pulsed EPR spectroscopic techniques, including ESEEM (electron spin echo envelope modulation) and pulsed ENDOR (electron-nuclear double resonance), are extremely useful for determining the magnitudes of the hyperfine couplings of macrocycle and axial ligand nuclei to the unpaired electron(s) on the metal as a function of magnetic field orientation relative to the complex. These data can frequently be used to determine the orientation of the g-tensor and the distribution of spin density over the macrocycle, and to determine the metal orbital(s) containing unpaired electrons and the macrocycle orbital(s) involved in spin delocalization. However, these studies cannot be carried out on metal complexes that do not have resolved EPR signals, as in the case of paramagnetic even-electron metal complexes. In addition, the signs of the hyperfine couplings, which are not determined directly in either ESEEM or pulsed ENDOR experiments, are often needed in order to translate hyperfine couplings into spin densities. In these cases, NMR isotropic (hyperfine) shifts are extremely useful in determining the amount and sign of the spin density at each nucleus probed. For metal complexes of aromatic macrocycles such as porphyrins, chlorins, or corroles, simple rules allow prediction of whether spin delocalization occurs through sigma or pi bonds, and whether spin density on the ligands is of the same or opposite sign as that on the metal. In cases where the amount of spin density on the macrocycle and axial ligands is found to be too large for simple metal-ligand spin delocalization, a macrocycle radical may be suspected. Large spin density on the macrocycle that is of the same sign as that on the metal provides clear evidence of either no coupling or weak ferromagnetic coupling of a macrocycle radical to the unpaired electron(s) on the metal, while large spin density on the macrocycle that is of opposite sign to that on the metal provides clear evidence of antiferromagnetic coupling. The latter is found in a few iron porphyrinates and in most iron corrolates that have been reported thus far. It is now clear that iron corrolates are remarkably noninnocent complexes, with both negative and positive spin density on the macrocycle: for all chloroiron corrolates reported thus far, the balance of positive and negative spin density yields -0.65 to -0.79 spin on the macrocycle. On the other hand, for phenyliron corrolates, the balance of spin density on the macrocycle is zero, to within the accuracy of the calculations (Zakharieva, O.; Schünemann, V.; Gerdan, M.; Licoccia, S.; Cai, S.; Walker, F. A.; Trautwein, A. X. J. Am. Chem. Soc. 2002, 124, 6636-6648), although both negative and positive spin densities are found on the individual atoms. DFT calculations are invaluable in providing calculated spin densities at positions that can be probed by (1)H NMR spectroscopy, and the good agreement between calculated spin densities and measured hyperfine shifts at these positions leads to increased confidence in the calculated spin densities at positions that cannot be directly probed by (1)H NMR spectroscopy. (13)C NMR spectroscopic investigations of these complexes should be carried out to probe experimentally the nonprotonated carbon spin densities.  相似文献   

3.
Weak molecular and magnetic exchange interactions in ternary copper(II) complexes, viz., [Cu(L-phe)(phen)(H(2)O)]ClO(4) (1), [Cu(L-phe)(bpy)(H(2)O)]ClO(4) (2), and [Cu(L-his)(bpy)]ClO(4).1.5H(2)O (3), where L-phe = L-phenylalanine, L-his = L-histidine, phen = 1,10-phenanthroline, and bpy = 2,2'-bipyridine, have been investigated. Single-crystal X-ray structures reveal that complex 2 crystallizes in a monoclinic space group P2(1), with unit cell parameters a = 7.422(7) A, b = 11.397(5) A, c = 12.610(2) A, beta = 102.10(5) degrees, V = 1043.0(11) A(3), Z = 2, R = 0.0574, and R(w) = 0.1657. Complex 3 crystallizes in a monoclinic space group C2, with a = 18.834(6) A, b = 10.563(4) A, c = 11.039(3) A, beta = 115.23(2) degrees, V = 1986.6(11) A(3), Z = 4, R = 0.0466, and R(w) = 0.1211. Molecules of 2, in the solid state, are self-assembled via weak intra- and intermolecular pi-pi stacking and H-bonding interactions. Molecules of 3 exhibit intermolecular dimeric association with the Cu.Cu separation being 3.811 A. X-ray structures and (1)H NMR studies reveal conformational isomerism in both solid and liquid states of complexes 1 and 2. The aromatic side chain of L-phe in 1 and 2 adopts either a "folded" (A) or an "extended" (B) conformation. Variable-temperature (1)H NMR and spin lattice relaxation measurements point out interconversion between conformations A and B at temperatures above 323 K. The change in molecular conformation induces a change in the electron density at the site of copper and band gap energy between HOMO and LUMO orbitals. Interestingly, in spite of paramagnetic nature, complexes 1 and 2 are amenable for both EPR and (1)H NMR spectroscopic studies. Single-crystal EPR spectra of 2 in three orthogonal planes are consistent with three-dimensional magnetic behavior. Intramolecular exchange dominates the dipolar interactions. The EPR spectra of 3 correspond to weak magnetic interactions between associated dimeric units. The structural and magnetic resonance investigations together reveal that the weak pi-pi stacking interactions are the electronic pathways for magnetic interactions in 1-3.  相似文献   

4.
Dibenzo[a,e]pentalene (DBP) is a non-alternant conjugated hydrocarbon with antiaromatic character and ambipolar electrochemical behavior. Upon both reduction and oxidation, it becomes aromatic. We herein study the chemical oxidation and reduction of a planar DBP derivative and a bent DBP-phane. The molecular structures of its planar dication, cation radical and anion radical in the solid state demonstrate the gained aromaticity through bond length equalization, which is supported by nucleus independent chemical shift-calculations. EPR spectra on the cation radical confirm the spin delocalization over the DBP framework. A similar delocalization was not possible in the reduced bent DBP-phane, which stabilized itself by proton abstraction from a solvent molecule upon reduction. This is the first report on structures of a DBP cation radical and dication in the solid state and of a reduced bent DBP derivative. Our study provides valuable insight into the charged species of DBP for its application as semiconductor.  相似文献   

5.
A series of nitronyl nitroxide (NN) diradicals with linear conjugated couplers and another series with aromatic couplers have been investigated by the broken-symmetry (BS) DFT approach. The overlap integral between the magnetically active orbitals in the BS state has been explicitly computed and used for the evaluation of the magnetic exchange coupling constant (J). The calculated J values are in very good agreement with the observed values in the literature. The magnitude of J depends on the length of the coupler as well as the conformation of the radical units. The aromaticity of the spacer decreases the strength of the exchange coupling constant. The SOMO-SOMO energy splitting analysis, where SOMO stands for the singly occupied molecular orbital, and the calculation of electron paramagnetic resonance (EPR) parameters have also been carried out. The computed hyperfine coupling constants support the intramolecular magnetic interactions. The nature of magnetic exchange coupling constant can also be predicted from the shape of the SOMOs as well as the spin alternation rule in the unrestricted Hartree-Fock (UHF) treatment. It is found that pi-conjugation along with the spin-polarization plays the major role in controlling the magnitude and sign of the coupling constant.  相似文献   

6.
The distances and orientations among reactant centers in the active site of coenzyme B12-dependent ethanolamine deaminase from Salmonella typhimurium have been characterized in the Co(II)-product radical pair state by using X-band electron paramagnetic resonance (EPR) and two-pulse electron spin-echo envelope modulation (ESEEM) spectroscopies in the disordered solid state. The unpaired electron spin in the product radical is localized on C2. Our approach is based on the orientation-selection created in the EPR spectrum of the biradical by the axial electron-electron dipolar interaction. Simulation of the EPR line shape yielded a best-fit Co(II)-C2 distance of 9.3 A. ESEEM spectroscopy performed at four magnetic field values addressed the hyperfine coupling of the unpaired electron spin on C2 with 2H in the C5' methyl group of 5'-deoxyadenosine and in the beta-2H position at C1 of the radical. Global ESEEM simulations (over the four magnetic fields) were weighted by the orientation dependence of the EPR line shape. A Nelder-Mead direct search fitting algorithm was used to optimize the simulations. The results lead to a partial model of the active site, in which C5' is located a perpendicular distance of 1.6 A from the Co(II)-C2 axis, at distances of 6.3 and 3.5 A from Co(II) and C2, respectively. The van der Waals contact of the C5'-methyl group and C2 indicates that C5' remains close to the radical species during the rearrangement step. The C2-Hs-C5' angle including the strongly coupled hydrogen, Hs, and the C5'-Hs orientation relative to the C1-C2 axis are consistent with a linear hydrogen atom transfer coordinate and an in-line acceptor p-orbital orientation. The trigonal plane of the C2 atom defines sub-spaces within the active site for C5' radical migration and hydrogen atom transfers (side of the plane facing Co(II)) and amine migration (side of the plane facing away from Co(II)).  相似文献   

7.
The radical cations of piperazine, morpholine, thiomorpholine, and thioxane were investigated by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy in a solid Freon matrix. Optimized geometry and magnetic parameters of the radical cations were calculated using a density functional theory (DFT)/Perdew-Burke-Ernzerhof (PBE) method. Both experimental and theoretical results suggest that all the studied species adopt chair (or distorted chair) conformations. No evidence for the boat conformers with intramolecular sigma-bonding between heteroatoms were obtained. In the cases of morpholine and thioxane, the oxygen atoms are characterized by relatively small spin populations, whereas a major part of spin density is located at N and S atoms, respectively. The thiomorpholine radical cation exhibits nearly equal spin population of N and S atoms. In most cases (except for thioxane), the calculated magnetic parameters agree with the experimental data reasonably well.  相似文献   

8.
The high resolution X-band electron para magnetic resonance (EPR) spectrum of quintet pyridyl-2,6-dinitrene was recorded after the photolysis of 4-amino-2,6-diazido-3,5-dichloropyridine in solid argon matrix at 15 K. This spectrum represents a new type of powder EPR spectra that are characteristic for quintet spin states with zero-field splitting parameters |E(q)/D(q)| approximately 1/4. All EPR lines of the quintet dinitrene were unambiguously assigned based on the eigenfield calculations of the Zeeman energy levels and angular dependencies of resonance magnetic fields. Owing to the high resolution of the experimental EPR spectrum, zero-field splitting parameters of the quintet dinitrene were determined with a high accuracy: D(q)=0.2100+/-0.0005 cm(-1) and E(q)=-0.0560+/-0.0002 cm(-1). These parameters provide correct information regarding the molecular angle Theta and distance r between two triplet sites in the molecule of quintet dinitrene. The measured molecular angle Theta=114.2 degrees+/-0.2 degrees is in excellent agreement with results of the density functional theory calculations. The analysis of the magnetic parameters shows that the spin population on the nitrene units in the quintet dinitrene is greater than that on the nitrene unit in the triplet nitrene.  相似文献   

9.
Following light absorption in acridine doped fluorene single crystals formation of a triplet state complex (heteroexcimer) has been established earlier. More detailed EPR investigations presented here permit the clarification of the nature of this complex. Hyperfine structure has been resolved for three nuclear spins which could be assigned by selective deuteration experiments: the nitrogen and meso-proton spin located in the guest-constituent of the complex and one proton spin originating from the CH2-group of a fluorene host molecule. The complete hyperfine tensors could be evaluated. The anisotropy is found to be that of a planar aromatic CH-fragment for both observed proton spins. As a consequence of the CH-fragment assignment the central CH2-group of the fluorene constituent of the complex has to change from a sp3 to a planar sp2 configuration indicating a photoinduced radical pair formation involving hydrogen abstraction from a fluorene and hydrogen addition to an acridine molecule. The model is able to explain: (a) the high spin density located at the observed CH-fragments; (b) the geometry of the molecular partners involved in the complex, and (c) the fine structure tensor on the basis of a simple point charge dipole-dipole coupling of the two unpaired electron spins.  相似文献   

10.
Dialkylphosphinyl radical 1 was synthesized as thermally stable yellow crystals and found to be monomeric both in solution and in the solid state. EPR spectrum showed that the spin density of 1 is mainly localized on the 3p orbital of the dicoordinated phosphorus atom. A distinct absorption band due to the electronic transition from nonbonding electron pair orbital to singly occupied 3p orbital on the phosphorus atom of 1 was observed at 445 nm in solution. Phosphinyl radical 1 underwent facile reaction with carbon tetrachloride, hydrogen abstraction, and a unique reaction with a persistent radical, galvinoxyl, giving a cyclic phosphaalkene and a silylether.  相似文献   

11.
A high yield, one-pot synthesis of the 1,2,3,5-dithiadiazolyl radical NC-(CF2)4-CNSSN radical by reduction of the corresponding 1,3,2,4-dithiadiazolium salt is reported. In the solid state, the title compound is dimerized in trans-cofacial fashion with intra-dimeric Sdelta+...N(delta-) interactions of ca. 3.2 angstroms, and the dimeric units are linked by electrostatic -C triple bond N(delta-)...Sdelta+ interactions forming an infinite chain. Magnetic susceptibility measurements performed on the solid state sample indicate a magnetic moment of 1.8 microB per dimer (1.3 microB per monomer) at 300 K and a good fit to the Bleaney-Bowers model in the temperature range 2-300 K with 2J = -1500 +/- 50 cm(-1), g = 2.02(5), rho = 0.90(3)%, and TIP = 1.25(4) x 10(-3) emu mol(-1). The [NC-(CF2)4-CNSSN radical]2 dimer is the second example of a 1,2,3,5-dithiadiazolyl radical dimer with an experimentally detected triplet excited state as probed by solid-state EPR [2J = -1730 +/- 100 cm(-1), |D| = 0.0278(5) cm(-1), |E| = 0.0047(5) cm(-1)]. The value of the singlet-triplet gap has enabled us to estimate the "in situ" dimerization energy of the radical dimer as ca. -10 kJ mol(-1). The diradical character of the dimer was calculated [CASSCF(6,6)/6-31G*] as 35%. The title radical shows magnetic bistability in the temperature range of 305-335 K as probed by the solid-state EPR presumably arising from the presence of a metastable paramagnetic supercooled phase. Bistability is accompanied by thermochromic behavior with a color change from dark green (dimeric solid) to dark brown (paramagnetic liquid).  相似文献   

12.
《中国化学会会志》2018,65(2):163-188
We present a few novel pulsed electron paramagnetic resonance techniques developed in our laboratory for the studies of structure and dynamics of the photo‐excited triplet state of organic molecules. We discuss many aspects of these new techniques and the significances of these measurements: (1) enhancing NMR signal intensity by dynamic nuclear polarization ‐ integrated solid effect, (2) performing magnetic resonance in zero‐field and low‐field by pulsed microwave, (3) mapping molecular motion of organic crystals by pulsed zero‐field and low‐field experiments, (4) probing spin dynamics at level anti‐crossing by fast field switching, (5) measuring hyperfine interaction by electron spin echo envelop modulation and spin‐echo electron nuclear double resonance and (6) detecting spin dynamics, nuclear quantum oscillation, entanglements and new avenues for quantum computer. We have employed the highly electron spin polarized pentacene triplet state as the model system in all of our pulsed EPR experiments. We performed most of our experiments at room temperature. The goals of our studies are aiming to improve spin detectability, to probe molecular dynamics, to determine electronic structures, to measure molecular interaction and motion, and to examine quantum coherence and oscillation which may yield new avenues in the applications of pulsed EPR techniques to quantum computer.  相似文献   

13.
We study the influence of humidity on the transport and magnetic properties of DNA within the quantum chemistry methods. Strong influence of water molecules on these properties, observed in this study, opens up opportunities for application of DNA in molecular electronics. Interaction of the nucleobases with water molecules leads to breaking of some of the pi bonds and appearance of unbound pi electrons. These unbound electrons contribute significantly to the charge transfer at room temperature by up to 10(3) times, but at low temperature the efficiency of charge transfer is determined by the spin interaction of two unbound electrons located on the intrastrand nucleobases. The charge exchange between the nucleobases is allowed only when the spins of unbound electrons are antiparallel. Therefore, the conductance of DNA molecule can be controlled by a magnetic field. That effect has potentials for applications in developing nanoscale spintronic devices based on the DNA molecule, where efficiency of spin interaction will be determined by the DNA sequence.  相似文献   

14.
The di-mixed-valence complex [{(eta(5)-C5H5)Fe(eta(5)-C5H4)}4(eta(4)-C4)Co(eta(5)-C5H5)]2+, 1(2+), has been evaluated as a molecular four-dot cell for the quantum cellular automata paradigm for electronic devices. The cations 1(1+) and 1(2+) are prepared in good yield by selective chemical oxidation of 1(0) and are isolated as pure crystalline materials. The solid-state structures of 1(0) and 1(1+) and the midrange- and near-IR spectra of 1(0), 1(1+), 1(2+), and 1(3+) have been determined. Further, the variable-temperature EPR spectra of 1(1+) and 1(2+), magnetic susceptibility of 1(1+) and 1(2+), M?ssbauer spectra of 1(0), 1(1+), and 1(2+), NMR spectra of 1(0), and paramagnetic NMR spectra of 1(1+) and 1(2+) have been measured. The X-ray structure determination reveals four ferrocene "dots" arranged in a square by C-C bonds to the corners of a cyclobutadiene linker. The four ferrocene units project from alternating sides of the cyclobutadiene ring and are twisted to minimize steric interactions both with the Co(eta(5)-C5H5) fragment and with each other. In the solid state 1(2+) is a valence-trapped Robin and Day class II compound on the 10(-12) s infrared time scale, the fastest technique used herein, and unambiguous evidence for two Fe(II) and two Fe(III) sites is observed in both the infrared and M?ssbauer spectra. Both EPR and magnetic susceptibility measurements show no measurable spin-spin interaction in the solid state. In solution, the NMR spectra show that free rotation around the C-C bonds connecting the ferrocene units to the cyclobutadiene ring becomes increasingly hindered with decreasing temperature, leading to spectra at the lowest temperature that are consistent with the solid-state structure. Localization of the charges in the cations, which is observed in the paramagnetic NMR spectra as a function of temperature, correlates with the fluxional behavior. Hence, the alignment between the pi systems of the central linker and the ferrocene moieties most likely controls the rate of electron exchange between the dots.  相似文献   

15.
Dynamic Nuclear Polarization (DNP) in the liquid state has become the focus of attention to improve the NMR sensitivity of mass limited samples. The Overhauser model predicts a fast reduction in DNP enhancement at high magnetic fields where the Electron Larmor frequency exceeds the typical inverse correlation time of the magnetic interaction between a radical spin and proton spins of the water molecules. Recent experiments have shown that an appreciable DNP enhancement in the liquid state is possible also at magnetic fields of 3 to 9 Tesla. At present it is not clear whether the Overhauser model needs to be adapted to explain these results. In the present paper we aim to resolve this question by a combination of in situ temperature dependent NMR relaxation measurements, EPR and DNP experiments. Enhancement factors of up to -165 are obtained with microwave powers below 500 mW. We conclude that at 3.4 Tesla (95 GHz) the various measurements are consistent with each other and in quantitative agreement with Overhauser theory. Microwave heating of the sample does play an important role to reduce the correlation times and allow a substantial Overhauser DNP. The typical enhancement factors may allow new applications in microfluidic NMR.  相似文献   

16.
An undecasubstituted chloroiron corrolate, octamethyltriphenylcorrolatoiron chloride, (OMTPCorr)FeCl, has been synthesized and studied by X-ray crystallography and (1)H and (13)C NMR spectroscopy. It is found that, although the structure is slightly saddled, the average methyl out-of-plane distance is only 0.63 Angstroms, while it is much greater for the dodecasubstituted porphyrinate analogue (OMTPP)FeCl (1.19 Angstroms) (Cheng, R.-J.; Chen, P.-Y.; Gau, P.-R.; Chen, C.-C.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 2563-2569). In addition, the distance of iron from the mean plane of the four macrocycle nitrogens is also smaller for (OMTPCorr)FeCl (0.387 Angstroms) than for (OMTPP)FeCl (0.46 Angstroms). The (1)H and (13)C NMR spectra of (OMTPCorr)FeCl, as well as the chloroiron complexes of triphenylcorrolate, (TPCorr)FeCl; 7,13-dimethyl-2,3,8,12,17,18-hexaethylcorrolate, (DMHECorr)FeCl; 7,8,12,13-tetramethyl-2,3,17,18-tetraethylcorrolate, (TMTECorr)FeCl; and the phenyliron complex of 7,13-dimethyl-2,3,8,12,17,18-hexaethylcorrolate, (DMHECorr)FePh, have been assigned, and the spin densities at the carbons that are part of the aromatic ring of the corrole macrocycle have been divided into the part due to spin delocalization by corrole --> Fe pi donation and the part due to the unpaired electron present on the corrole ring. It is found that although the spin density at the beta-pyrrole positions is fairly similar to that of (TPCorr)FeCl, the meso-phenyl-carbon shift differences delta(m) - delta(p) are opposite in sign of those of (TPCorr)FeCl. This finding suggests that the radical electron is ferromagnetically coupled to the unpaired electrons on iron, rather than antiferromagnetically coupled, as in all of the other chloroiron corrolates. The solution magnetic moment was measured for (OMTPCorr)FeCl and found to be mu(eff) = 4.7 +/- 0.5 micro(B), consistent with S = 2 and ferromagnetic coupling. From this study, two conclusions may be reached about iron corrolates: (1) the spin states of chloroiron corrolates are extremely sensitive to the out-of-plane distance of iron, and (2) pyrrole-H or -C shifts are not useful in delineating the spin state and electron configuration of (anion)iron corrolates.  相似文献   

17.
The 3-(2'-imidazolyl)-1,5-dimethyl-6-oxoverdazyl radical (imvd(*)) and the corresponding tetrazane H3imvd were prepared and structurally characterized, the former as two different hydrates. Reaction of imvd(*) with [M(hfac)2] led to the formation of monometallic complexes [M(hfac)2(imvd(*))] (M = Ni and Mn). They were characterized by single-crystal X-ray diffraction. In the solid state, all four radical-containing compounds exhibit imidazole-oxoverdazyl pi stacking. Following the structural analysis, imvd(*) behaves as an antiferromagnetic (AF) coupled chain with J = -100 cm(-1) (H = -J summation operator SiS(i+1)). The magnetic behavior of [M(hfac)2(imvd(*))] complexes is interpreted with a four-coupled spin model with a metal ion radical intramolecular interaction (JMn = -62.5 cm(-1) and JNi = 193 cm(-1); H = -JSMSimvd) and an AF intermolecular interaction (JMn' = -12.6 cm(-1) and JNi' = -4.3 cm(-1)) related to imidazole-oxoverdazyl pi stacking.  相似文献   

18.
Photoinduced electron transfer has been observed in a molecular triad, consisting of a porphyrin (P) covalently linked to a tetrathiafulvalene (TTF) and a fullerene derivative (C(60)), in the different phases of the liquid crystal E-7 and in a glass of 2-methyltetrahydrofuran (2-MeTHF) by means of time-resolved electron paramagnetic resonance (EPR) spectroscopy. In both solvents, an EPR signal observed immediately after excitation has been assigned to the radical pair TTF(*+)-P-C(60)(*-), based on its magnetic interaction parameters and spin polarization pattern. In the 2-MeTHF glass and the crystalline phase of E-7, the TTF(*+)-P-C(60)(*-) state is formed from the TTF-(1)P-C(60) singlet state via an initial TTF-P(*+)-C(60)(*-) charge-separated state. Long-lived charge separation ( approximately 8 mus) for the singlet-born radical pair is observed in the 2-MeTHF glass at cryogenic temperatures. In the nematic phase of E-7, a high degree of ordering in the liquid crystal is achieved by the molecular triad. In this phase, both singlet- and triplet-initiated electron transfer routes are concurrently active. At room temperature in the presence of the external magnetic field, the triplet-born radical pair (T)(TTF(*+)-P-C(60)(*-)) has a lifetime of approximately 7 mus, while that of the singlet-born radical pair (S)(TTF(*+)-P-C(60)(*-)) is much shorter (<1 mus). The difference in lifetimes is ascribed to spin dynamic effects in the magnetic field.  相似文献   

19.
The EPR of NO. can be detected in the liquid and solid states when crystal fields are sufficient to remove the axial symmetry and separate the (pi*)x and (pi*)y orbitals by a few hundred reciprocal centimeters. The theory of the EPR spin Hamiltonian of bound NO. is reviewed, further developed, and then applied to the observed frozen-liquid spectra of NO. bound to Ru(II) obtained from RuIINO+ complexes by reduction. Comparisons to earlier reports on the observation of the EPR spectra of NO. are made.  相似文献   

20.
The solvent effect on the electronic spectra of di(4-bromophenyl)carbazone and its Cu(II), Zn(II), Cd(II) complexes have been studied by synthesizing and characterizing them by magnetic moment, IR, EPR and 1H NMR spectral measurements. The electric dipole moments of these compounds in the first electronically excited state have been determined. The results indicate that the observed band systems in these compounds may be attributed to pi(*) <-- pi transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号