首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical behavior of colchicine at an acetylene black-dihexadecyl hydrogen phosphate (denoted as AB-DHP) composite film coated glassy carbon electrode (GCE) was investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV). Compared with the poor electrochemical signal at the unmodified GCE, the electrochemical response of colchicine at the AB-DHP film modified GCE was greatly improved, as confirmed from the significant peak current enhancement. The remarkable peak current enhancement indicates that the AB-DHP modified GCE has great potential in the sensitive determination of colchicine. Thus, all the experimental conditions, which influence the electrochemical response of colchicine, were studied and the optimum conditions were achieved. Finally, a sensitive and simple voltammetric method with a good linear relationship in the range of 1.0 x 10(-7) approximately 4.0 x 10(-5) mol/L, was developed for the determination of colchicine. The detection limit of colchicine was also examined and a low value of 4.0 x 10(-8) mol/L for 4-min accumulation was obtained (S/N=3). This electrode was successfully applied to detect colchicine in human urine samples.  相似文献   

2.
Polycysteic acid based electrochemical oxidation of L-cysteine (CySH) and carbon nanotubes (CNTs) formed a composite thin film material at a glassy carbon electrode (GCE) that was used a novel modifier for electroanalytical determination of sinomenine which is used for rheumatoid arthritis treatment. The determination of sinomenine at the composite modified electrode was studied by differential pulse voltammetry (DPV). The peak current obtained at + 0.632 V (vs SCE) from DPV was linearly dependent on the sinomenine concentration in the range of 1.0 x 10(-7) to 6.0 x 10(-5) M in a B-R buffer solution (0.04 M, pH 1.81) with a correlation coefficient of 0.998. The detection limit (S/N = 3) was 5.0 x 10(-8) M. The electrochemical reaction mechanism of sinomenine was also discussed. This new method was then applied to the high-throughput determination of sinomenine in human serum samples with satisfactory results. This polycysteic acid/CNTs composite film may be considered to be a promising, low-cost, durable, and biocompatible material for the modification of sensors in applications to pharmaceutical and biomedical analysis.  相似文献   

3.
The electrochemical oxidation of L-cysteine (CySH) in presence of carbon nanotubes (CNTs) formed a composite film at a glassy carbon electrode (GCE) as a novel modifier for directly electroanalytical determination of terbinafine without sample pretreatment in biological fluid. The determination of terbinafine at the modified electrode with strongly accumulation was studied by differential pulse voltammetry (DPV). The peak current obtained at +1.156 V (vs. SCE) from DPV was linearly dependent on the terbinafine concentration in the range of 8.0 x 10(-8)-5.0 x 10(-5 )M in a B-R buffer solution (0.04 M, pH 1.81) with a correlation coefficient of 0.998. The detection limit (S/N=3) was 2.5 x 10(-8 )M. The low-cost modified electrode showed good sensitivity, selectivity, and stability. This developed method had been applied to the direct determination of terbinafine in human serum samples with satisfactory results. It is hopeful that the modified electrode will be applied for the medically clinical test and the pharmacokinetics in future.  相似文献   

4.
Glycine was covalently grafted on to a glassy carbon electrode (GCE) by amine cation radical formation in electrooxidation of the amino-containing compound. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry proved the immobilization of glycine on the GCE. The modified electrode reduced the overpotentials of dopamine (DA) and ascorbic acid (AA) by approximately 0.15 V and 0.23 V, respectively, and resolved the overlapping voltammetric response of DA and AA into two well-defined voltammetric peaks in cyclic voltammetry (CV) or differential pulse voltammetry (DPV), unlike the unmodified GCE; this can be used for the simultaneous determination of these species in a mixture. The differential pulse peak current was linearly dependent on DA and AA concentration in the range 5 x 10(-6)-8 x 10(-4) mol L(-1) and 6 x 10(-5)-4 x 10(-3) mol L(-1), with correlation coefficients of 0.996 and 0.994, respectively. The detection limits (3delta) for DA and AA were 1.8 x 10(-6) mol L(-1) and 2.1 x 10(-5) mol L(-1), respectively. The modified electrode is very sensitive, selective and stable, and has been applied to the determination of DA and AA simultaneously in samples with satisfactory results.  相似文献   

5.
beta-Alanine was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation in the electrooxidation process of the amino-containing compound. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) proved the immobilization of beta-alanine monolayer on GCE. The electrode shows strong electrocatalytic functions to dopamine (DA) and ascorbic acid (AA), reducing the overpotentials by 0.20 V and 0.23 V, respectively. Due to its different catalytic effects toward DA and AA, the modified electrode resolved the overlapping voltammetric responses of DA and AA into two well-defined voltammetric peaks by CV or differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly related to DA and AA concentrations in the ranges of 4.0 x 10(-6)-5.0 x 10(-4) mol/L and 2.0 x 10(-5)-6.0 x 10(-3) mol/L with correlation coefficients of 0.997 and 0.995, respectively. The detection limits (3 sigma) for DA and AA were 2.4 x 10(-6) mol/L and 1.2 x 10(-5) mol/L, respectively. The electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of DA and AA simultaneously in samples with satisfactory results.  相似文献   

6.
Luteolin is a flavonoid reported to occur widely in many medicinal plants. The electrochemical behavior of luteolin was studied in phosphate buffer solution (PBS) of pH 4.0 at a glassy carbon electrode (GCE) by cyclic voltammetry (CV) and differential pulse voltammetric method (DPV). The results indicated the well-defined redox peak of luteolin which was involving two electrons and two protons was observed and the electrode process is adsorption-controlled. The charge transfer coefficient (alpha) was calculated as 0.66. The relationships between oxidation peak current and the concentration of luteolin are linear in the range of 1.0 x 10(-8) - 1.0 x 10(-6) M by DPV method. The detection limit had been estimated as 5.0 x 10(-9) M. The facile and rapid method has been successfully applied to the detection of luteolin in tablets.  相似文献   

7.
Lu D  Zhang Y  Lin S  Wang L  Wang C 《The Analyst》2011,136(21):4447-4453
An electrochemical sensor based on a CdSe nanoparticles (NPs)-decorated poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene (CdSe-PDDA-G) nanocomposite was fabricated for the sensitive detection of esculetin. The nanocomposite was characterized by X-ray diffraction (XRD), ultraviolet/visible spectra (UV-vis) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrochemical behaviors of esculetin on the CdSe-PDDA-G composite film-modified glassy carbon electrode (GCE). The experimental results indicated that the incorporation of CdSe NPs with PDDA-G greatly enhanced the electrochemical response of esculetin. This electrochemical sensor displayed satisfactory analytical performance for esculetin detection over a range from 1.0 × 10(-8) to 5.0 × 10(-5) mol L(-1) with a detection limit of 4.0 × 10(-9) mol L(-1) (S/N = 3). Moreover, the sensor also exhibited good reproducibility and stability, and could be used for the detection of esculetin in real samples with satisfactory results.  相似文献   

8.
以水合肼为还原剂,采用均相还原法制备还原氧化石墨烯-多壁碳纳米管复合材料(rGO-MWCNTs),通过滴涂法将其修饰到玻碳电极(GCE)表面.以此复合材料为载体,采用电化学方法制备了金纳米粒子-还原氧化石墨烯-多壁碳纳米管复合膜修饰电极(AuNPs-rGO-MWCNTs/GCE).通过扫描电镜(SEM)、EDS能谱技术和电化学方法对此电极进行了表征.研究了双酚A在修饰电极上的电化学行为.结果表明,此电极对双酚A的电极过程具有良好的电化学活性,在0.10 mol/L PBS溶液(pH 7.0)中,微分脉冲伏安法测定双酚A的线性范围为5.0 × 10-9~1.0 × 10-7 mol/L和1.0 × 10-7~2.0 × 10-5 mol/L,检出限为1.0 ×10-9 mol/L(S/N=3). 将此电极用于模拟水样和超市购物小票样品中双酚A含量的测定,加标回收率分别为97%~110%和98%~104%.  相似文献   

9.
Graphene/p-aminobenzoic acid composite film modified glassy carbon electrode (Gr/p-ABA/GCE) was first employed for the sensitive determination of dopamine (DA). The electrochemical behavior of DA at the modified electrode was investigated by cyclic voltametry (CV), differential pulse voltametry (DPV) and amperometric curve. The oxidation peak currents of DA increased dramatically at Gr/p-ABA/GCE. The modified electrode was used to electrochemically detect dopamine (DA) in the presence of ascorbic acid (AA). The Gr/p-ABA composite film showed excellent electrocatalytic activity for the oxidation of DA in phosphate buffer solution (pH 6.5). The peak separation between DA and AA was large up to 220 mV. Using DPV technique, the calibration curve for DA determination was obtained in the range of 0.05-10 μM. The detection limit for DA was 20 nM. AA did not interfere with the determination of DA because of the very distinct attractive interaction between DA cations and the negatively Gr/p-ABA composite film. The proposed method exhibited good stability and reproducibility.  相似文献   

10.
A novel palladium-polyphenosafranine nano-composite (PPS-Pd) was synthesized by electrochemical co-deposition at a glassy carbon electrode (GCE) for fabrication of a nitrite sensor, PPS-Pd/GCE. This PPS-Pd film was characterized by X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microanalysis (SEM). It was found that the PPS-Pd nano-composite consisted of Pd nanoparticles smaller than 10 nm in diameter which stick together due to the polymer, forming a Pd-embedded PPS layer structure. The sensing ability was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and differential pulse amperometry (DPA). The PPS-Pd/GCE had excellent catalytic activity toward the oxidation of nitrite: high current sensitivity of 0.365 A/M cm(-2), good reproducibility, good stability and fast response. In neutral solutions, a linear concentration range of 1.0 x 10(-6) to 1.1 x 10(-3) M (R(2) = 0.999) with the detection limit (s/n = 3) of 3 x 10(-7) M nitrite was obtained for DPV determination.  相似文献   

11.
本研究利用石墨烯(rGO)与3,4-乙烯二氧噻吩(EDOT)单体芳香环之间的π-π*相互作用和氢键作用,采用脉冲恒电位一步法制备了聚3,4-乙烯二氧噻吩石墨烯(PEDOT-rGO)复合膜,将纳米镍(NiNPs)电沉积在此复合膜(PEDOT-rGO)表面,制备了NiNPs/PEDOT-rGO修饰玻碳电极(NiNPs/PEDOT-rGO/GCE),研究了此修饰电极对葡萄糖的电催化氧化性能.实验结果表明,此NiNPs/PEDOT-rGO/GCE可以作为无酶传感器实现对葡萄糖的检测.本方法稳定性高,选择性好,线性范围宽(2μmol/L~58 mmol/L),检出限低至0.7μmol/L,可以用于对葡萄糖的快速、灵敏检测.  相似文献   

12.
Glassy carbon electrode (GCE) is covalently modified with aspartic acid (Asp). The modified electrode is used for the simultaneous electrochemical determination of hydroquinone (HQ) and catechol (CC) and shows an excellent electrocatalytical effect on the oxidation of HQ and CC by cyclic voltammetry (CV) in 0.1 mol/L acetate buffer solution (pH 4.5). In differential pulse voltammetric (DPV) measurements, the modified electrode could separate the oxidation peak potentials of HQ and CC present in binary mixtures by about 101 mV though the bare electrode gave a single broad response. A successful elimination of the fouling effect by the oxidized product of HQ on the response of CC has been achieved at the modified electrode. The determination limit of HQ in the presence of 0.1 mmol/L CC was 9.0 x 10(-7) mol/L and the determination limit of CC in the presence of 0.1 mmol/L HQ was 5.0 x 10(-7) mol/L. The proposed method has been applied to the simultaneous determination of HQ and CC in a water sample with simplicity and high selectivity.  相似文献   

13.
利用氧化还原反应制备纳米银-石墨烯复合纳米材料(Ag NPs-GN),将其修饰在玻碳电极表面制备了纳米银-石墨烯修饰玻碳电极(Ag NPs-GN/GCE)。在p H 4.78的Britton-Robinson(B-R)缓冲溶液中,用循环伏安法(CV)和方波伏安法(SWV)研究了对乙酰氨基酚在Ag NPs-GN/GCE和GN/GCE上的电化学行为。结果表明,二者对对乙酰氨基酚的氧化还原反应均有电催化作用,而且复合纳米材料Ag NPs-GN具有较单一GN更好的催化效果。用方波伏安法测得对乙酰氨基酚的还原峰电流与其浓度在1.0×10-7~5.0×10-4mol/L范围内呈线性关系,检出限(S/N=3)为3.0×10-8mol/L。建立了片剂中对乙酰氨基酚含量测定的新方法,修饰电极具有较好的重现性和稳定性。  相似文献   

14.
采用循环伏安法和差分脉冲伏安法对水杨酸在电活化玻碳电极上的电化学行为进行研究.在pH7.0的PBS溶液中,将玻碳电极用恒电位法在+1.7V电位阳极氧化400 s.在0.2 mol·L- NaOH溶液中,水杨酸在0.602 V处有一良好的氧化峰,其氧化峰电流与扫描速率在0.02~0.2 V·s-1范围内呈良好线性关系,表...  相似文献   

15.
A chemically modified electrode based on a chitosan-multiwall carbon nanotube (MWNT) coated glassy carbon electrode (GCE) is described, which exhibits an attractive ability to determine dopamine (DA) and ascorbic acid (AA) simultaneously. The modified electrode exhibited a high differential pulse voltammetry (DPV) current response to DA at 0.144 V and AA at -0.029 V (vs. SCE) in a 0.1 mol l(-1) phosphate buffer solution (pH = 7.2). The properties and behaviors of the chitosan-multiwall carbon nanotube modified electrode (MC/GCE) were characterized using cyclic voltammetry (CV) and DPV methods. The mechanism for the discrimination of dopamine from ascorbic acid at MC/GCE is discussed. The linear calibration range for DA and AA were 5 x 10(-7) mol l(-1) to 1 x 10(-4) mol l(-1) (r = 0.997), and 5 x 10(-6) mol l(-1) to 1 x 10(-3) mol l(-1) (r = 0.996), respectively. The MC/GCE showed good sensitivity, selectivity and stability.  相似文献   

16.
Wang C  Wang G  Jiao S  Guo Z  Fang B 《Annali di chimica》2007,97(5-6):331-342
Aminylferrocene(FcAI)-Nanogold(NG) modified glassy carbon electrode (FcAI/NG/GCE) was prepared by the Au-N bond between Au and FcAI. Electrochemical impedance spectroscopy (EIS) was employed to study the surface of the modified electrode. The electrochemical behavior of dopamine (DA) on the modified electrode was investigated and it was found that the modified electrode had an obvious electrocatalytic effect on DA. Compared with a bare GCE, the modified electrode exhibited an apparent shift of the oxidation peak potential in the negative potential direction and a marked enhancement in the current response for DA. We investigated the determination of DA on the modified electrode by differential pulse voltammetry (DPV). Linear calibration curve was obtained in the range of 7.0 x 10(-7) mol/L to 6x10(-4) mol/L of DA in 0.1 mol/L phosphate buffer solution (pH = 7.0) with a correlation coefficient of 0.9989. The detection limit (S/N = 3) of DA was estimated to be 1.0 x 10(-7) mol/L. Especially, by using the modified electrode, we can separate the oxidation peaks of ascorbic acid (AA) and DA in the PBS and it was satisfactory for the determination of DA with the interference of AA.  相似文献   

17.
Li MG  Wang YL  Wang GF  Fang B 《Annali di chimica》2005,95(9-10):685-693
The electrochemical behaviour of 6-mercaptopurine (6-MP) at a microdisk electrode is investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results indicate that 6-MP can be strongly adsorbed on the surface of the static mercury drop electrode (SMDE) and reacts with Ag+ ions which are produced at positive potentials. 6-MP yields a well-defined cathodic stripping signal during the negative scan at about -0.812 V (vs. SCE) in pH 9.0 phosphate buffer solution. The electrode has hence been used for the determination of 6-MP by differential pulse voltammetry (DPV). The linear range is between 2.0x10(-7) and 5.0x10(-5) mol/l, with the calculated detection limit (S/N=3) of 8.0x10(-8) mol/l. The relative standard deviation is 3.0% for eight successive determinations of 4.0x10(-5) mol/l 6-MP. The determination of 6-MP in tablets has also been carried out and satisfactory results have been obtained.  相似文献   

18.
A novel amperometric sensor and chromatographic detector for determination of parathion has been fabricated from a multi-wall carbon nano-tube (MWCNT)/Nafion film-modified glassy-carbon electrode (GCE). The electrochemical response to parathion at the MWCNT/Nafion film electrode was investigated by cyclic voltammetry and linear sweep voltammetry. The redox current of parathion at the MWCNT/Nafion film electrode was significantly higher than that at the bare GCE, the MWCNT-modified GCE, and the Nafion-modified GCE. The results indicated that the MWCNT/Nafion film had an efficient electrocatalytic effect on the electrochemical response to parathion. The peak current was proportional to the concentration of parathion in the range 5.0×10–9–2.0×10–5 mol L–1. The detection limit was 1.0×10–9 mol L–1 (after 120 s accumulation). In high-performance liquid chromatography with electrochemical detection (HPLC–ED) a stable and sensitive current response was obtained for parathion at the MWCNT/Nafion film electrode. The linear range for parathion was over four orders of magnitude and the detection limit was 6.0×10–9 mol L–1. Application of the method for determination of parathion in rice was satisfactory.  相似文献   

19.
采用电聚合的方法制备了聚对氨基苯磺酸(PABSA)修饰电极,以循环伏安法和差分脉冲伏安法研究了桑色素在该修饰电极上的电化学行为。PABSA和黄酮类药物桑色素的π-π共轭作用使得桑色素在该修饰电极上产生的氧化峰更加灵敏。实验发现,在pH 7.0的磷酸盐缓冲介质中,桑色素在0.214 V处产生灵敏的氧化峰。在优化实验条件下,采用差分脉冲伏安法对桑色素进行定量测定,桑色素的氧化峰电流与其浓度呈良好的线性关系,线性范围为5.0×10-7~1.0×10-3 mol/L,检出限为1.0×10-7 mol/L。将该修饰电极用于桑枝生物样品中桑色素含量的测定,结果满意。该方法具有灵敏度高、重现性好的特点,且该修饰电极稳定性高,可重复使用。  相似文献   

20.
A glassy carbon electrode (GCE) modified with docosyltrimethylammonium chloride (DCTMACl) is used for simultaneous determination of dopamine (DA) and ascorbic acid (AA) using differential pulse voltammetry (DPV) technique in 0.10 mol·L?1 phosphate buffer solution of pH 5.0. The cationic surfactant DCTMACl modified film has a positive charge. DA exists as the positively charged species, whereas AA is the negatively charged one in the solution. Thus, at DCTMACl film-modified GCE, the oxidation peak potential of AA shifts toward less negative potential and the peak current of AA increases a little, while the oxidation peak potential of DA shifts toward more positive potential and peak current decreases greatly in comparison with that on bare electrode. The two anodic peaks are separated around 200 mV. Under optimal conditions, the catalytic peak currents obtained from DPV increase linearly with concentrations of DA and AA in the ranges of 1.0?×?10?5 to 1.0?×?10?3?mol·L?1. This electrode has good reproducibility, high stability in its voltammetric response, and low detection limit (micromolar) for both AA and DA. The modified electrode has been applied to the determination of DA and AA in injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号