首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine Type I collagen was investigated, building on a large scale computer model of a collagen fibril in water, and focusing on two stages of the leather manufacturing process. The effects of different salts (NaCl, CaCl(2), and Na(2)SO(4)) on the swelling behavior of collagen at low pH (the pickling process) were studied. The salts suppress the swelling of the fibrils at low pH and we find specific stabilizing influences for CaCl(2) and Na(2)SO(4), due to weak Ca(2+)/Cl(-) and strong SO(4) (2-)/lysine/arginine interactions, respectively. Using state-of-the-art sampling techniques, such as the metadynamics algorithm, to allow an efficient exploration of configuration space, we were able to investigate the effect of polyacrylate and poly(methyl acrylate) - two polymeric retanning agents - on the fibril. Both polymers interact with the ammonium groups on the surface, but polyacrylate shows significantly stronger interactions. We suggest that it is this stronger interaction that contributes to the reduced suitability of PAA as a tanning agent.  相似文献   

2.
A thermodynamic approach based on both the classical Flory-Huggins (FH) formalism and the association equilibria (AE) theory has been developed to study the solubility properties of a system formed by a proton-donor solvent (A), a proton-acceptor solvent (B) and a proton-acceptor polymer (C). The miscibility of this ternary system is attained by competitive specific interactions via hydrogen-bonding established between the hydroxyl and carbonyl interacting groups of either solvent-solvent (AB) or solvent-polymer (AC) system components. The binary AB and AC specific interactions and their dependence with the system composition as well as with the extent of the association equilibrium have been quantified by means of two new parameters, ΔgAB and ΔgAC. These excess functions have appeared to be equivalent to the combinatorial or entropic term of the Gibbs free energy of the complex formation process, which accounts for the entropy of mixing plus the intermolecular specific interactions. The theoretical predictions have reasonablely agreed with experimental data on preferential solvation of two systems taken from literature: methanol(A)/1,4-dioxane(B)/poly(alkyl methacrylate)(C) and n-alcohol(A)/heptan-3-one(B)/poly(vinyl pyrrolidone)(C).  相似文献   

3.
用粘度法研究共混聚合物的相溶性   总被引:5,自引:1,他引:4  
用乌氏粘度计测定含氢键共混体系PS(OH)/PBMA,PS(OH)/PBA和不含氢键的PBMA/PBA在甲苯中25℃的比浓粘度,根据η_(SP)/C~C的线性关系可计算出Huggins参数K_(H)和Chee提出的半经验参数μ。实验结果表明在这三组共混体系中PS(OH)/PBMA的氢键结合能力比PS(OH)/PBA强,而PBMA/PBA不存在键段之间的特殊相互作用,体系是不相溶的。  相似文献   

4.
Self-assembled materials consisting of V(2)O(5), polyallylamine (PAH) and silver nanoparticles (AgNPs) were obtained by the layer-by-layer (LbL) method, aiming at their application as electrodes for lithium-ion batteries and electrochromic devices. The method employed herein allowed for linear growth of visually homogeneous films composed of V(2)O(5), V(2)O(5)/PAH, and V(2)O(5)/PAH/AgNP with 15 bilayers. According to the Fourier transform infrared spectra, interaction between the oxygen atom of the vanadyl group and the amino group should be responsible for the growth of these films. This interaction also enabled establishment of an electrostatic shield between the lithium ions and the sites with higher negative charge, thereby raising the ionic mobility and consequently increasing the energy storage capacity and reducing the response time. According to the site-saturation model and the electrochemical and spectroelectrochemical results, the presence of PAH in the self-assembled host matrix decreased the number of V(2)O(5) electroactive sites. Thus, AgNPs were stabilized in PAH and inserted into the nanoarchitecture, so as to enhance the specific capacity. This should provide new conducting pathways and connect isolated V(2)O(5) particles in the host matrix. Therefore, new nanoarchitectures for specific interactions were formed spontaneously and chosen as examples in this work, aiming to demonstrate the potentiality of the adopted self-assembled method for enhancing the charge transport rate into the host matrices. The obtained materials displayed suitable properties for use as electrodes in lithium batteries and electrochromic devices.  相似文献   

5.
The magnetic behaviour of the coordination polymer [Co(C(3)H(3)N(2))(2)](n) has been investigated by magnetization and specific heat measurements. Low-field magnetic susceptibility shows the presence of two maxima at approximately 8 and 4 K (T(f)), which reflect short-range low-dimensional antiferromagnetic behaviour and the existence of a spin-glass-like state, respectively. The latter state was observed by magnetic irreversibility in both the zero-field cooled and field-cooled data, and was also confirmed by specific heat measurements. The magnetic specific heat (C(mag)) shows a lack of any long-range ordered peaks. Instead, a broad maximum near T(f) was observed in the C(mag)(T)/T-curve. Below T(f), the C(mag)(T) data follow the relation: C(mag)(T)/T = gamma + AT. We suggest that the competition of the antiferromagnetic (AF) intra-chain and the ferromagnetic (F) inter-chain interactions in a low-dimensional arrangement of magnetic Co(2+) ions can produce the spin-glass behaviour in the sample. The susceptibility data was analyzed in terms of a spin S = 3/2 Heisenberg linear-chain model with a small exchange energy and is consistent with the presence of both F and AF interactions. The splitting of the crystal field energy levels of the Co(2+) ions causes a Schottky-type specific heat anomaly of around 60 K.  相似文献   

6.
Sun Z  Ling X  Sun W  Xiao J  Yin C  Wang Y 《Electrophoresis》2007,28(17):3064-3069
CC chemokine receptor 4 (CCR4) is a kind of G-protein-coupled receptors with a characteristic seven-transmembrane structure and selectively expressed on Th2-type CD4+ T-cells, which play a pivotal role in allergic inflammation. In this study, the interactions between 2-(2-(2,4-dichloro-phenyl)-4-{[(2-methyl-3-chloro-phenyl)-1-ylmethyl]-carbamoyl}-methyl)-5-oxo-pyrrole-1-yl)-N-(3-piperidinyl-propyl)-acetamide (compound A), a known CCR4 antagonist, and ML40 were studied by CZE for the first time. Both qualitative and quantitative characterizations of the drug-peptide binding were determined. The binding constant of the interaction between the trans-diastereomer of compound A and ML40, calculated from the Scatchard plot by regression, was (1.06 +/- 0.11)x10(5)/M. Also, it was confirmed that the trans-diastereomer was more potent affinity with CCR4 than its cis-counterpart. The experimental results show that this reported method by CZE for the determination of the compound A and ML40 interactions is powerful, sensitive, and fast, requires less amounts of reagents, and further, it can be employed as one of the reliable screening methods to a series of lactam analogs in the drug discovery for allergic inflammation diseases.  相似文献   

7.
The self-organized (2log3 x 2log3) coadsorbed phases of C(6)H(6) with O and with CO are investigated within first-principles density functional theory. The main driving force for formation of the C(6)H(6)/2O phase is found to be the reduction of O adatom repulsive interactions, while for the C(6)H(6)/2CO phase it is the interspecies attractive interactions and benzene-benzene repulsive interactions which are most important.  相似文献   

8.
The mechanisms for the reactions of isobutane and adamantane with polyhalogen electrophiles (HHal(2)(+), Hal(3)(+), Hal(5)(+), and Hal(7)(+), Hal = Cl, Br, or I) were studied computationally at the MP2 and B3LYP levels of theory with the 6-31G (C, H, Cl, Br) and 3-21G (I) basis sets, as well as experimentally for adamantane halogenations in Br(2), Br(2)/HBr, and I(+)Cl(-)/CCl(4). The transition structures for the activation step display almost linear C...H...Hal interactions and are characterized by significant charge transfer to the electrophile; the hydrocarbon moieties resemble the respective radical cation structures. The regiospecificities for polar halogenations of the 3-degree C-H bonds of adamantane, the high experimental kinetic isotope effects (k(H)/k(D) = 3-4), the rate accelerations in the presence of Lewis and proton (HBr) acids, and the high kinetic orders for halogen (7.5 for Br(2)) can only be understood in terms of an H-coupled electron-transfer mechanism. The three centered-two electron (3c-2e) electrophilic mechanistic concept based on the attack of the electrophile on a C-H bond does not apply; electrophilic 3c-2e interactions dominate the C-H activations only with nonoxidizing electrophiles such as carbocations. This was shown by a comparative computational analysis of the electrophilic and H-coupled electron-transfer activation mechanisms for the isobutane reaction with an ambident electrophile, the allyl cation, at the above levels of theory.  相似文献   

9.
Bond critical point, local kinetic energy density, G(rc), and local potential energy density, V(rc), properties of the electron density distributions, rho(r), calculated for silicates such as quartz and gas-phase molecules such as disiloxane are similar, indicating that the forces that govern the Si-O bonded interactions in silica are short-ranged and molecular-like. Using the G(rc)/rho(rc) ratio as a measure of bond character, the ratio increases as the Si-O bond length, the local electronic energy density, H(rc)= G(rc) + V(rc), and the coordination number of the Si atom decrease and as the accumulation of the electron density at the bond critical point, rho(rc), and the Laplacian, inverted Delta2 rho(rc), increase. The G(rc)/rho(rc) and H(rc)/rho(rc) ratios categorize the bonded interaction as observed for other second row atom M-O bonds into discrete categories with the covalent character of each of the M-O bonds increasing with the H(rc)/rho(rc) ratio. The character of the bond is examined in terms of the large net atomic charges conferred on the Si atoms comprising disiloxane, stishovite, quartz, and forsterite and the domains of localized electron density along the Si-O bond vectors and on the reflex side of the Si-O-Si angle together with the close similarity of the Si-O bonded interactions observed for a variety of hydroxyacid silicate molecules and a large number of silicate crystals. The bond critical point and local energy density properties of the electron density distribution indicate that the bond is an intermediate interaction between Al-O and P-O bonded interactions rather than being a closed-shell or a shared interaction.  相似文献   

10.
The combination of IR, Raman and NMR spectroscopy was used in the study of the blends of semicrystalline and amorphous polymers with considerably different strength of intermolecular interactions: poly(ϵ-caprolactam)/polystyrene (PCL/PS), poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) and poly(N-methyllaurolactam)/poly(4-vinylphenol) (PNMLL/PVPh). In the vibrational and NMR spectra of the blends composed of non-interacting polymers (PCL/PS) and weakly interacting polymers (PEO/PMMA), no band changes were observed which would indicate changes of the conformational structures. 1H NMR relaxation of the PCL and PS components in the blends is the same as in the respective homopolymers similarly treated. In the blends of weakly interacting polymers (PEO/PMMA), the crystallinity of PEO is influenced by the presence of PMMA and is negligible in the blends with less than 30 wt.-% of PEO. The rotating-frame spin-lattice relaxation time for protons TH1p of PMMA indicates close contact of the PMMA and PEO chains. In the blends PNMLL/PVPh with strong hydrogen-bonding interactions, both components are intimately mixed on a scale of 3–4 nm and significant shifts of some bands both in vibrational and in NMR spectra reveal changes of structure.  相似文献   

11.
In this work, a computational study is performed to evaluate the adsorption-based separation of CO(2) from flue gas (mixtures of CO(2) and N(2)) and natural gas (mixtures of CO(2) and CH(4)) using microporous metal organic framework Cu-TDPAT as a sorbent material. The results show that electrostatic interactions can greatly enhance the separation efficiency of this MOF for gas mixtures of different components. Furthermore, the study also suggests that Cu-TDPAT is a promising material for the separation of CO(2) from N(2) and CH(4), and its macroscopic separation behavior can be elucidated on a molecular level to give insight into the underlying mechanisms. On the basis of the single-component CO(2), N(2), and CH(4) isotherms, binary mixture adsorption (CO(2)/N(2) and CO(2)/CH(4)) and ternary mixture adsorption (CO(2)/N(2)/CH(4)) were predicted using the ideal adsorbed solution theory (IAST). The effect of H(2)O vapor on the CO(2) adsorption selectivity and capacity was also examined. The applicability of IAST to this system was validated by performing GCMC simulations for both single-component and mixture adsorption processes.  相似文献   

12.
In order to study the influence of hyperconjugative, inductive, steric, and hydrogen-bond interactions on (1)J(CF) and (2)J(CF) NMR spin-spin coupling constants (SSCCs), they were measured in cis- and trans-4-t-butyl-2-fluorocyclohexanones and their alcohol derivatives. The four isotropic terms of those SSCCs, Fermi contact (FC), spin dipolar (SD), paramagnetic spin-orbit (PSO), and diamagnetic spin-orbit (DSO), were calculated at the SOPPA(CCSD)/EPR-III level. Significant changes in FC and PSO terms along that series of compounds were rationalized in terms of their transmission mechanisms by employing a qualitative analysis of their expressions in terms of the polarization propagator formalism. The PSO term is found to be sensitive to proximate interactions like steric compression and hydrogen bonding; we describe how it could be used to gauge such interactions. The FC term of (2)J(CF) SSCC in cis-4-t-butyl-2-fluorocyclohexanone is rationalized as transmitted in part by the superposition of the F and O electronic clouds.  相似文献   

13.
The stabilized Koopmans' theorem (SKT) in long-range corrected density functional theory is used to characterize the temporary anion states of perfluoro-n-alkanes (n-PFAs) from C(2) to C(5), and perfluorocycloalkanes (c-PFAs) from C(3) to C(4). In this approach, stabilization is accomplished by varying the exponents of appropriate diffuse functions. The energies of temporary anion states are then identified by investigating the relationship between the resultant eigenvalues and scale parameter. The characteristics of resonance orbitals are also examined. For the lowest unfilled orbitals of perfluoroalkanes, results indicate that they are mainly from the π-bonding interactions between all neighboring C atoms. In addition, their energies decrease as the sizes of the perfluoroalkanes increase. Moreover, the energies of the c-C(3)F(6)/c-C(4)F(8) are lower than those of the corresponding n-C(3)F(8)/n-C(4)F(10). When compared with experimental data, our SKT calculations can yield conformable results. Thus, this SKT approach can provide more information on the resonance states of perfluoroalkanes.  相似文献   

14.
Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [C(n)mim][NTf2] (n=2.4, 6, 8.10) from simple gas H(2), N(2), to polar CO(2), and C(2)H(6), leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution-diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution-diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H(2), N(2)) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C(2)H(6) and CO(2). With exothermic dissolution enthalpy and large order disruptive entropy, C(2)H(6) displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C(2)H(6) gas molecules "peg" on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO(2)-ILs affinity resulted in a more prolonged "residence time" for the gas molecule, typified by reversed CO(2)/N(2) selectivity and slowest CO(2) transport despite CO(2) possess the highest solubility and comparable diffusivity in the ionic liquids. The unique transport and dissolution behaviour of CO(2) are further exploited by examining the residing state of CO(2) molecules in the ionic liquid phase, which leads to a hypothesis of a condensing and holding capacity of ILs towards CO(2), which provide an explanation to slower CO(2) transport through the SILMs. The pressure related exponential increase in permeations rate is also analysed which suggests a typical concentration dependent diffusion rate at high gas concentration under increased gas feed pressure. Finally the strong influence of discriminating and molecular specific gas-ILs interactions on gas perm-selectivity performance points to future specific design of ionic liquids for targeted gas separations.  相似文献   

15.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission at neuromuscular and autonomic ganglionic synapses in the peripheral nervous system. The postsynaptic localization of muscle ((α1)2β1γδ) and neuronal ((α3β4)2β4) nicotinic receptors at these synapses is mediated by interactions between the nAChR intracellular domains and cytoplasmic scaffolding proteins. Recent high resolution structures and functional studies provide new insights into the molecular determinants that mediate these interactions. Surprisingly, they reveal that the muscle nAChR binds 1–3 rapsyn scaffolding molecules, which dimerize and thereby form an interconnected lattice between receptors. Moreover, rapsyn binds two distinct sites on the nAChR subunit cytoplasmic loops; the MA-helix on one or more subunits and a motif specific to the β subunit. Binding at the latter site is regulated by agrin-induced phosphorylation of βY390, and increases the stoichiometry of rapsyn/AChR complexes. Similarly, the neuronal nAChR may be localized at ganglionic synapses by phosphorylation-dependent interactions with 14-3-3 adaptor proteins which bind specific motifs in each of the α3 subunit cytoplasmic loops. Thus, postsynaptic localization of nAChRs is mediated by regulated interactions with multiple scaffolding molecules, and the stoichiometry of these complexes likely helps regulate the number, density, and stability of receptors at the synapse.  相似文献   

16.
17.
Two-laser, action spectroscopy experiments have been performed in the I(2)B-X, υ'-0 spectral region on H(2)···I(2) and D(2)···I(2) complexes to investigate the dependence of the H(2)/D(2) + I(2) intermolecular interactions on orientation. The spectra contain features associated with at least two different conformers of the ground-state H(2)/D(2)···I(2)(X,υ' = 0) complexes; one conformer has a preferred T-shaped geometry with the H(2)/D(2) moiety localized in a potential minimum that is orthogonal to the I-I bond axis, and the second conformer has a linear geometry with the H(2)/D(2) moiety positioned in minima at either end of the I(2) molecule, along the bond axis. Those features associated with complexes containing para-H(2)(j = 0), ortho-H(2)(j = 1), ortho-D(2)(j = 0), and para-D(2)(j = 1) are also assigned. The linear conformers are found to be more strongly bound than the T-shaped conformers with binding energies of 118.9(1.9) cm(-1) versus 91.3-93.3 cm(-1) for the ortho-H(2)···I(2) complexes and 144.2(2.1) cm(-1) versus 107.9 cm(-1) for the para-D(2)···I(2) complexes, respectively. Electronic structure calculations of the complexes containing ICl and I(2) with H(2), He, Ne, and Ar were performed to reveal the nature of the interactions and to shed insight into the origins of the different binding energies. The most stable minima in the H(2)/D(2) + I(2)(B,υ') excited-state potentials have T-shaped geometries. Calculated energies and probability amplitudes of the excited-state levels provide insight into the different excited-state intermolecular vibrational levels accessed by transitions of the two ground-state conformers.  相似文献   

18.
The behavior of CO(2) and N(2), both as single components and as binary mixtures, in two cage-type silica zeolites was studied using atomistic simulations. The zeolites considered, ITQ-3 and paradigm cage-type zeolite ZK4 (the all-silica analog of LTA), were chosen so that the principles illustrated can be generalized to other adsorbent/adsorbate systems with similar topology and types of interactions. N(2) was chosen both because of the potential uses of N(2)/CO(2) separations and because it differs from CO(2) most significantly in the magnitude of its Coulombic interactions with zeolites. Despite similarities between N(2) and CO(2) diffusion in other materials, we show here that the diffusion of CO(2) within cage-type zeolites is dominated by an energy barrier to diffusion located at the entrance to the narrow channels connecting larger cages. This barrier originates in Coulombic interactions between zeolites and CO(2)'s quadrupole and results in well-defined orientations for the diffusing molecules. Furthermore, CO(2)'s favorable electrostatic interactions with the zeolite framework result in preferential binding in the windows between cages. N(2)'s behavior, in contrast, is more consistent with that of molecules previously studied. Our analysis suggests that CO(2)'s behavior might be common for adsorbates with quadrupoles that interact strongly with a material that has narrow windows between cages.  相似文献   

19.
This paper aims to illustrate the rich potential of the thioether-carboxyl combination in generating coordination networks with tunable and interesting structural features. By simply varying the ratio between Cu(NO(3))(2) and the bifunctional ligand tetrakis(methylthio)benzenedicarboxylic acid (TMBD) as the reactants, three coordination networks can be hydrothermally synthesized in substantial yields, which present a distinct evolution with regard to metal-ligand interactions. Specifically, Cu(TMBD)(0.5)(H(2)TMBD)(0.5)·H(2)TMBD (1) was obtained with a relatively small (1:1) Cu(NO(3))(2)/TMBD ratio, and crystallizes as an one-dimensional (1D) coordination assembly based on Cu(I)-thioether interactions, which is integrated by hydrogen-bonding to additional H(2)TMBD molecules to form a three-dimensional (3D) composite network with all the carboxylic acid and carboxylate groups remaining uncoordinated to the metal ions. A medium (1.25:1) Cu(NO(3))(2)/TMBD ratio leads to compound Cu(2)TMBD, in which Cu(I) ions simultaneously bond to the carboxylate and thioether groups, while an even higher (2.4:1) Cu(NO(3))(2)/TMBD ratio produced a mixed-cation compound Cu(II)(2)OHCu(I)(TMBD)(2)·2H(2)O (2), in which the carboxylic groups are bonded to (cupric) Cu(II) ions, and the thioether groups to Cu(I). Despite the lack of open channels in 2, crystallites of this compound exhibit a distinct and selective absorption of NH(3), with a concomitant color change from green to blue, indicating substantial network flexibility and dynamics with regards to gas transport.  相似文献   

20.
This work describes the preparation and characterization of a cellulose acetate fiber coated with Al(2)O(3), resulting in the organic-inorganic hybrid Cel/Al(2)O(3). Furthermore, the hybrid was modified by attaching organofunctional groups by reaction with the precursor reagents (RO)(3)Si(CH(2))(3)L (L=NH(2), NH(CH(2))(2)NH(2), NH(CH(2))(2)NH(CH(2))(2)NH(2), and N(2)C(3)H(3) (imidazole)), resulting in Cel/Al(2)O(3)/Si(CH(2))(3)NH(2) (1), Cel/Al(2)O(3)/Si(CH(2))(3)NH(CH(2))(2)NH(2) (2), Cel/Al(2)O(3)/Si(CH(2))(3)NH(CH(2))(2)NH(CH(2))(2)NH(2) (3), and Cel/Al(2)O(3)/Si(CH(2))(3)N(2)C(3)H(3) (4). The amounts of attached organofunctional groups were (in mmol per gram of the material) 1=1.90, 2=1.89, 3=1.66, and 4=1.35. The isotherms of adsorption of FeCl(3), CuCl(2), and ZnCl(2) by Cel/Al(2)O(3)/Si(CH(2))(3)L from ethanol solutions were obtained at 298 K. Accurate estimates of the specific sorption capacities and the heteregeneous stability constants of the immobilized metal complexes were determined with the aid of several computational procedures. It is shown that the sorptional capacities are much less than the concentrations of the attached organofunctional groups. As all sorption isotherms are fitted properly with the Langmuir isotherm equation, the effects of the energetic heterogeneity and the lateral interactions do not affect the chemisorption equilibria. The heterogeneous stability constants of the immobilized complexes are fairly high, which provides efficient removal of the metal ions from solutions by the hybrid materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号