首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A method for the determination of theophylline (TH), without derivatization, in serum by isotope dilution mass spectrometry using labelled [1, 3-15N2-2-13C]theophylline (LTH) as internal standard is described. After deproteinization, the analyte is directly injected into a high performance liquid chromatography – mass spectrometer operating with atmospheric-pressure chemical-ionization (APCI HPLC/MS). The concentrations of TH in sera measured by APCI HPLC/MS are compared with results from gas chromatography – isotope dilution mass spectrometry (GC-ID/MS), high performance liquid chromatography (HPLC) and fluorescence polarization immunoassay (FPIA). The accuracy, precision and recovery of the APCI HPLC/MS and GC-ID/MS methods are discussed. The coefficient of variation (CV) determined from duplicate samples was less than 2%. The detection limit was 10 ng/ml at a signal-to-noise ratio of 3:1. Received: 17 January 1996/Revised: 26 March 1996/Accepted: 5 April 1996  相似文献   

2.
Phthalate esters are additives used in polyvinylchloride and are found as contaminants in many food products. An isotope dilution mass spectrometry technique has been developed for accurate analysis of 16 phthalate esters in Chinese spirits by adopting the 16 corresponding isotope‐labeled phthalate esters. The ethanol in the spirit sample was first removed by heating with a water bath at 100°C with a stream of nitrogen, after which the residue was extracted with n‐hexane twice. The phthalates collected were identified and quantified by gas chromatography with tandem mass spectrometry in multiple reaction monitoring mode. The spiking recoveries of 16 analytes ranged from 94.3 to 105.3% with relative standard deviation values of <6.5%. The detection limits for 16 analytes were <10.0 ng/g. The expanded relative uncertainties were from 3.0 to 14%. A survey was performed on Chinese spirits from the market. Six of the nine analyzed samples were contaminated by phthalates. Di‐n‐butyl phthalate and di‐2‐ethylhexyl phthalate showed higher detection frequency and concentrations. This isotope dilution gas chromatography with tandem mass spectrometry method is simple, rapid, accurate, and highly sensitive, which qualifies as a candidate reference method for the determination of phthalates in spirits.  相似文献   

3.
N-Trifluoroacetyl-n-butyl ester derivatives of deuterium-labelled valine, leucine, isoleucine and phenylulanine were analysed by the isotope dilution technique and gas chromatography/mass spectrometry (GC/MS). Selected ion retrieval and peak-area integration were applied. The conditions adopted gave good separations with a short experimental time and high intensity. Ratios of the total isotopic abundance and metabolic kinetic curves were obtained. The regression coefficient of the standard dilution curve was 0.99 and the relative standard deviation was 0.3%. The stabilities of the amino acid derivatives were also tested.  相似文献   

4.
A liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed to determine total N‐acetylcysteine in human plasma. Mass spectrometric detection was achieved in positive electrospray ionization and multiple reaction monitoring mode. The mass transition pairs of N‐acetylcysteine and the isotope‐labeled internal standard d3‐N‐acetylcysteine were 164 → 122 and 167 → 123, respectively. The method was linear over the range of 10–5000 ng/mL in human plasma. The adoption of trichloroacetic acid significantly enhanced the extraction recovery. The blank matrix was screened to minimize the influence of endogenous N‐acetylcysteine. After being fully validated, the method was successfully applied to the pharmacokinetic and bioequivalent study of N‐acetylcysteine after oral administration of 600 mg tablets to 24 healthy Chinese volunteers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Inaccuracy in health-related measurements raises overall health care costs, results in misdiagnoses, leads to inaccurate conclusions in clinical studies, and results in inaccurate nutrition labeling. NIST has an extensive program aimed at providing the health measurements community with standard reference materials (SRMs) to assist them in making accurate measurements. A variety of approaches are used to certify health-related SRMs. For pure crystalline SRMs used as primary standards, direct assays of purity are often not possible. Thus numerous techniques including differential scanning calorimetry, mass spectrometry, chromatography, and others may be used to assess purity. For matrix SRMs used to assess the accuracy of measurement systems, the approaches for certification depend upon the needs of the users and NIST capabilities. When accuracy needs are the highest and the methods exist, NIST uses definitive methods, primarily involving isotope dilution mass spectrometry. These methods have been applied to the certification of serum-based SRMs for a number of the common clinical analytes. For many analytes, definitive methods have not been developed, so NIST uses other strategies for certification. In some cases, such as for drugs of abuse, two independent methods are used for the measurements. For nutrients such as vitamins, in-house methods are used along with results from outside laboratories having extensive experience with a particular analysis. The paper includes tables with examples of many of the health-related SRMs that are available. Received: 15 May 1997 / Revised: 23 July 1997 / Accepted: 25 July 1997  相似文献   

6.
《Analytical letters》2012,45(17):2767-2786
A new protocol for metabolomic studies was developed by combining liquid chromatography-tandem mass spectrometry and isotope dilution mass spectrometry with universal 13C labeled internal standards from Escherichia Coli. The multiple reaction monitoring mode of mass spectrometry was used for quantification. Forty-five water-soluble intracellular metabolites, including 20 amino acids, 16 organic acids (primarily from the tricarboxylic acid cycle), and 9 cofactors, were measured and 34 of them were successfully quantified using the 13C-labeled internal standards. The limit of detection, limit of quantification, precision, and linearity of the methods were evaluated. The methods were applied to the quantitative analysis of intracellular metabolites extracted from wild-type and ethanol-adapted strains of Clostridium thermocellum cultivated with and without ethanol stress, and all 34 metabolites including all 9 cofactors were successfully quantified. Further multivariate data analyses of the metabolic differences between wild-type and ethanol-adapted strains were performed on the quantitative data, which can help elucidate the metabolic mechanism behind ethanol adaptation in C. thermocellum.

Supplemental materials are available for this article. Go to the publisher's online edition of Analytical Letters to view the supplemental file.  相似文献   

7.
As part of a collaboration with the National Institutes of Health’s Office of Dietary Supplements and the Food and Drug Administration’s Center for Drug Evaluation and Research, the National Institute of Standards and Technology has developed two standard reference materials (SRMs) representing different forms of saw palmetto (Serenoa repens), SRM 3250 Serenoa repens fruit and SRM 3251 Serenoa repens extract. Both of these SRMs have been characterized for their fatty acid and phytosterol content. The fatty acid concentration values are based on results from gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS) analysis while the sterol concentration values are based on results from GC-FID and liquid chromatography with mass spectrometry analysis. In addition, SRM 3250 has been characterized for lead content, and SRM 3251 has been characterized for the content of β-carotene and tocopherols. SRM 3250 (fruit) has certified concentration values for three phytosterols, 14 fatty acids as triglycerides, and lead along with reference concentration values for four fatty acids as triglycerides and 16 free fatty acids. SRM 3251 (extract) has certified concentration values for three phytosterols, 17 fatty acids as triglycerides, β-carotene, and γ-tocopherol along with reference concentration values for three fatty acids as triglycerides, 17 fatty acids as free fatty acids, β-carotene isomers, and δ-tocopherol and information values for two phytosterols. These SRMs will complement other reference materials currently available with concentrations for similar analytes and are part of a series of SRMs being developed for dietary supplements. Contribution of the US Government; not subject to copyright  相似文献   

8.
《中国化学快报》2020,31(9):2423-2427
Direct infusion mass spectrometry (DIMS) is a powerful technique in clinical diagnosis for screening neonatal amino acid metabolic disorders from dried blood spots (DBS). However, DIMS sometimes generated false-positive results for analysis of amino acids. In this work, we utilized a stable isotope derivatization method, combining with liquid chromatography tandem mass spectrometry (SID-LC-MS), to improve the specificity for screening amino acids in DBS specimens. A pair of isotope reagents, p-(dimethylamino)phenyl isothiocyanate (DMAP-NCS) and 4-isothiocyanato-N,N-bis(methyl-[2H2])aniline ([2H4]DMAP-NCS), was synthesized and used to label amino acids in DBS specimens. The [2H4]DMAP-NCS labelled amino acid standards were used as internal standards to compensate the matrix effect. This method was validated by measuring linearity, recovery and accuracy. The results showed that the developed SID-LC-MS method can be used for sensitive and selective determination of 12 diagnostically important amino acids in DBS specimens.  相似文献   

9.
Species-specific stable isotope dilution in combination with gold trap- or gas chromatography (GC)-inductively coupled plasma mass spectrometry (ICP-MS) is reported for the determination of inorganic mercury and methylmercury in diatoms (Chaetoceros curvisetus). The optimum conditions for the separation parameters were established. The isotope dilution analysis was performed using 199Hg-enriched Hg2+ and laboratory-synthesized 201Hg-enriched methylmercury. The absolute detection limits obtained with isotope dilution-ICP-MS were 9 pg for total mercury and 0.6 pg for methylmercury. The relative error of 7 Hg isotopic abundances based on the peak area measurements was better than 2.0% for 20 pg of methylmercury (as Hg) and 250 pg of inorganic mercury. The accuracy of the method was validated with a biological certified reference material. The developed method was then applied to investigate the uptake of inorganic mercury and methylmercury by C. curvisetus. Continuous uptake of inorganic mercury and methylmercury was observed during 5 days of incubation.  相似文献   

10.
《Analytical letters》2012,45(15):2946-2948
Abstract

The liquid chromatography isotope dilution mass spectrometry (LC/ID‐MS) has recently been used for the certification of organic reference materials. We are developing a new definitive method of LC‐ID/MS as to determination creatinine in serum. We prepared a stock standard solution of creatinine in 10 mmol/l of acetic acid at a concentration of 8.84 mmol/l. With this acetic acid concentration, creatinine dissolved completely in a few minutes. This stock standard solution was stable at least for 1 year and has widely applications (such as GC‐MS, LC‐MS, LC, colorimetric method, etc).  相似文献   

11.

A high accuracy measurement procedure developed and validated at LGC has been transferred to a number of expert UK laboratories, and their experience in applying the technique has been evaluated by inter-laboratory comparisons. It is an “exact matching” calibration procedure for analysis of organic analytes using isotope dilution mass spectrometry (IDMS). This calibration procedure uses a calibration blend and a sample blend with closely matched isotope amount ratios, and is an iterative process, culminating in the calibration blend and sample blend having identical isotope amount ratios. It is capable of high accuracy, since systematic errors in the determination of the isotope amount ratios are cancelled out. A series of four inter-laboratory comparisons of increasing difficulty were carried out involving a number of expert laboratories. The first three comparisons used gas chromatography mass spectrometry (GC–MS) analysis of the pesticide metabolite (pp′-dichlorodiphenyl) dichloroethylene (pp′-DDE), involving both conventional calibration and IDMS exact matching procedures for pp′-DDE in a solvent and a complex liquid matrix (corn oil). The fourth comparisons utilised liquid chromatography mass spectrometry (LC–MS) and involved the analysis of sulphamethazine (4-amino-N-(4,6 dimethyl-2 pyrimidinyl) benzenesulphonamide) in solvent using IDMS and conventional calibration techniques. Following the first trial, a workshop for participants was held on the use of the exact matching procedure together with a short course on uncertainty estimation. The results of the comparisons clearly showed the superior accuracy of using IDMS with the exact matching procedure for both GC–MS and LC–MS applications. These comparisons and the workshop have enabled the methodology to be transferred to UK industry, helping to improve UK measurement capability.

  相似文献   

12.
Separation and detection of seven V-type (venomous) and G-type (German) organophosphorus nerve agent degradation products by gas chromatography with inductively coupled plasma mass spectrometry (GC–ICPMS) is described. The nonvolatile alkyl phosphonic acid degradation products of interest included ethyl methylphosphonic acid (EMPA, VX acid), isopropyl methylphosphonic acid (IMPA, GB acid), ethyl hydrogen dimethylamidophosphate sodium salt (EDPA, GA acid), isobutyl hydrogen methylphosphonate (IBMPA, RVX acid), as well as pinacolyl methylphosphonic acid (PMPA), methylphosphonic acid (MPA), and cyclohexyl methylphosphonic acid (CMPA, GF acid). N-(tert-Butyldimethylsilyl)-N-methyltrifluroacetamide with 1% TBDMSCl was utilized to form the volatile TBDMS derivatives of the nerve agent degradation products for separation by GC. Exact mass confirmation of the formation of six of the TBDMS derivatives was obtained by GC–time of flight mass spectrometry (TOF-MS). The method developed here allowed for the separation and detection of all seven TBDMS derivatives as well as phosphate in less than ten minutes. Detection limits for the developed method were less than 5 pg with retention times and peak area precisions of less than 0.01 and 6%, respectively. This method was successfully applied to river water and soil matrices. To date this is the first work describing the analysis of chemical warfare agent (CWA) degradation products by GC–ICPMS. Figure Illustrated here are six parent organophosphorus nerve agents corresponding to the degradation products analyzed by gas chromatography with ICPMS and ToF-MS detection. The authors would like to thank Daisy-Malloy Hamburg and Kevin M. Kubachka for creating this figure  相似文献   

13.
Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3,000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.  相似文献   

14.
Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.  相似文献   

15.
Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the δ values of these reference materials should bracket the isotopic range of samples with unknown δ values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW‐SLAP) and carbonates (NBS 19 and L‐SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA‐IRMS). At present only L‐glutamic acids USGS40 and USGS41 satisfy these requirements for δ13C and δ15N, with the limitation that L‐glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on‐line (i.e. continuous flow) hydrogen reductive gas chromatography‐isotope ratio mass‐spectrometry (GC‐IRMS), (ii) five nicotines for oxidative C, N gas chromatography‐combustion‐isotope ratio mass‐spectrometry (GC‐C‐IRMS, or GC‐IRMS), and (iii) also three acetanilide and three urea reference materials for on‐line oxidative EA‐IRMS for C and N. Isotopic off‐line calibration against international stable isotope measurement standards at Indiana University adhered to the ‘principle of identical treatment’. The new reference materials cover the following isotopic ranges: δ2Hnicotine ?162 to ?45‰, δ13Cnicotine ?30.05 to +7.72‰, δ15Nnicotine ?6.03 to +33.62‰; δ15Nacetanilide +1.18 to +40.57‰; δ13Curea ?34.13 to +11.71‰, δ15Nurea +0.26 to +40.61‰ (recommended δ values refer to calibration with NBS 19, L‐SVEC, IAEA‐N‐1, and IAEA‐N‐2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC‐IRMS that are available with different δ15N values. Comparative δ13C and δ15N on‐line EA‐IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA‐IRMS reference materials. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

16.
The National Institute of Standards and Technology (NIST) has developed several Standard Reference Materials (SRMs) based on human serum. NIST SRM 909b, Human Serum, is a lyophilized human serum material with concentrations for seven organic and six inorganic analytes at two levels certified solely by definitive methods (DMs). This material provides the vehicle by which high precision, high accuracy measurements made with DMs at NIST can be transferred through the measurement hierarchy to other laboratories. Isotope dilution gas chromatographic-mass spectrometric (GC-IDMS) methods were applied to measure cholesterol, creatinine, glucose, urea, uric acid, triglycerides, and total glycerides. Thermal ionization isotope dilution mass spectrometry (TI-IDMS) was used for determination of lithium, magnesium, potassium, calcium, and chloride. In addition, chloride was determined by coulometry, providing a comparison between two DMs. Sodium, which lacks a stable isotope that would permit isotope dilution mass spectrometric (IDMS) measurement, was determined by gravimetry. SRM 909b includes certified values for total glycerides and triglycerides, which were not certified in the previous lot of this material (SRM 909a). Improvement in uniformity of vial fill weight in the production of SRM 909b resulted in smaller certified uncertainties over previous freeze-dried serum SRMs. Uncertainties at the 99% level of confidence for relative expanded uncertainty (%) for certification of the organic analytes on a mmol/L/g basis ranged from 0.44% for urea (level II) to 5.04% for glucose (level II). (In-house studies have shown glucose to be a relatively unstable analyte in similar lyophilized serum materials, degrading at about 1% per year.) Relative expanded uncertainties (99% C.I.) for certification of inorganic analytes on a mmol/L/g basis ranged from 0.25% for chloride (level I) to 0.49% for magnesium (level II).  相似文献   

17.
The National Institute of Standards and Technology (NIST) has developed several Standard Reference Materials (SRMs) based on human serum. NIST SRM 909b, Human Serum, is a lyophilized human serum material with concentrations for seven organic and six inorganic analytes at two levels certified solely by definitive methods (DMs). This material provides the vehicle by which high precision, high accuracy measurements made with DMs at NIST can be transferred through the measurement hierarchy to other laboratories. Isotope dilution gas chromatographic-mass spectrometric (GC-IDMS) methods were applied to measure cholesterol, creatinine, glucose, urea, uric acid, triglycerides, and total glycerides. Thermal ionization isotope dilution mass spectrometry (TI-IDMS) was used for determination of lithium, magnesium, potassium, calcium, and chloride. In addition, chloride was determined by coulometry, providing a comparison between two DMs. Sodium, which lacks a stable isotope that would permit isotope dilution mass spectrometric (IDMS) measurement, was determined by gravimetry. SRM 909b includes certified values for total glycerides and triglycerides, which were not certified in the previous lot of this material (SRM 909a). Improvement in uniformity of vial fill weight in the production of SRM 909b resulted in smaller certified uncertainties over previous freeze-dried serum SRMs. Uncertainties at the 99% level of confidence for relative expanded uncertainty (%) for certification of the organic analytes on a mmol/L/g basis ranged from 0.44% for urea (level II) to 5.04% for glucose (level II). (In-house studies have shown glucose to be a relatively unstable analyte in similar lyophilized serum materials, degrading at about 1% per year.) Relative expanded uncertainties (99% C.I.) for certification of inorganic analytes on a mmol/L/g basis ranged from 0.25% for chloride (level I) to 0.49% for magnesium (level II). Received: 30 July 1997 / Revised: 24 October 1997 / Accepted: 31 October 1997  相似文献   

18.
The aim of this work was speciation analysis of metabolites in feces samples collected within a clinical study during which a bromine-containing anti-tuberculosis drug (TMC207) was administered to patients with multi-drug resistant tuberculosis infection. Owing to slow elimination of the drug, no 14C label was used within this study. Quantification of the bromine species was accomplished using high performance liquid chromatography coupled to inductively coupled plasma–mass spectrometry (HPLC/ICP-MS) in combination with on-line isotope dilution (on-line ID), while structural elucidation of the species was performed using HPLC coupled to electrospray ionization–mass spectrometry. The ICP-MS-based method developed shows a good intra- and inter-day reproducibility (relative standard deviation = 3.5%, N = 9); the limit of detection (1.5 mg TMC207 L−1) is of the same order of magnitude as that for HPLC/radiodetection; the dynamic range of the method covers more than two orders of magnitude. Furthermore, the column recovery was demonstrated to be quantitative (recoveries between 90.6% and 99.5%). Based on the excellent figures of merit, the “cold” HPLC/ICP-MS approach could be deployed for the actual human in vivo metabolism study, such that exposure of the human volunteers to the 14C radiolabel was avoided.  相似文献   

19.
A heart‐cutting two dimensional liquid chromatography coupled with tandem mass spectrometry method was developed for the analysis of tobacco‐specific N‐nitrosamines (TSNAs) at low concentration level in Virginia‐type cigarette smoke. A strong cation exchange column was utilized for the first dimensional separation, which effectively removed acidic and neutral components in the smoke, followed by a reversed phase liquid chromatography coupled with tandem mass spectrometric analysis. To capture components of the TSNAs in the effluent on the trapping column, a compensating pump was applied for online dilution and pH adjustment during the period of the TSNAs fraction transferring and enrichment. Highly sensitive determination of the TSNAs in mainstream cigarette smoke was achieved by isotope deuterated internal standards under the multiple reaction monitoring mode. Compared with traditional methodologies, the method was almost no matrix interference. Limits of quantity for the TSNAs were within 0.027–0.094 ng/mL, and the results showed good reproducibility and accuracy. Finally, the new method was applied for analysis of the Kentucky reference cigarettes and the results agreed well with joint experiments of Cooperation Centre for Scientific Research Relative to Tobacco.  相似文献   

20.
A method for the determination of trace impurities (U, Th, Ca, Fe, Cr, Ni, Cu, and Cd) in the refractory metals molybdenum and tungsten with isotope dilution mass Spectrometry (IDMS) has been developed. This method enables determinations of uranium and thorium down to the lowest pg/g level with high precision and accuracy. Selective chromatographic, extractive and electrolytic methods for the trace-matrix separation were combined with positive thermal ionization mass spectrometry. Different samples of high purity (4N) and of ultra high purity (UHP) materials for advanced technologies were analysed. The detection limits reached are (in ng/g): U 0.006, Th 0.008, Ca 10, Fe 19, Cr 0.5, Ni 0.6, Cu 2.7, and Cd 0.12. A comparison of results with other sensitive analytical methods (ICP-MS, GDMS, SIMS) makes obvious the urgent necessity of a reliable calibration method like IDMS because the analytical results obtained by the other methods often spread over a wide range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号