首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Size dependence of Young's modulus in ZnO nanowires   总被引:2,自引:0,他引:2  
We report a size dependence of Young's modulus in [0001] oriented ZnO nanowires (NWs) with diameters ranging from 17 to 550 nm for the first time. The measured modulus for NWs with diameters smaller than about 120 nm is increasing dramatically with the decreasing diameters, and is significantly higher than that of the larger ones whose modulus tends to that of bulk ZnO. A core-shell composite NW model in terms of the surface stiffening effect correlated with significant bond length contractions occurred near the {1010} free surfaces (which extend several layers deep into the bulk and fade off slowly) is proposed to explore the origin of the size dependence, and present experimental result is well explained. Furthermore, it is possible to estimate the size-related elastic properties of GaN nanotubes and relative nanostructures by using this model.  相似文献   

2.
Semiconductor nanowires (NWs) exhibit tunable physical properties intrinsically related to their reduced dimensionality, quantum size effect, morphology, and surface effects. By using density functional theory, we investigated the cross-sectional effect on the electronic structure of Ag-doped ZnO NWs. Three types of NWs have been considered: hexagonal cross-sectional ZnO NWs with zigzag and armchair surfaces, respectively, and triangular cross-sectional ZnO NW with zigzag surface. The results show that Ag prefers to substitute surface Zn atoms and induces typical p-type characteristic for all kinds of NWs. Moreover, single Ag doping could create a much shallower acceptor with a smaller hole effective mass in triangular ZnO NW than in the two hexagonal ZnO NWs. With the increase of Ag concentration, the p-type doping becomes much less effective overall. However, double Ag substituting in the zigzag surface of triangular ZnO NW improves the p-type properties, while substituting in the angle site seriously damage the p-type conduction. As the triangular ZnO NWs and prismatic ZnO nanoparticles have been synthesized recently, on the basis of our results, we expect that effective p-type could be achieved via incorporating Ag in triangular ZnO NWs experimentally.  相似文献   

3.
Dynamic tensile properties of glass-fiber polymer composites embedded with ZnO nanowhiskers are investigated by a split Hopkinson tensile bar. The stress-strain curves, ultimate strength, failure strain and elastic modulus are obtained and the failure mechanism of the composites is investigated by the macroscopic and microscopic observation of fractured specimens. The strain rate effect on the mechanical behavior is discussed and a constitutive model is derived by simulating the experimental data. The experimental results show that the materials have an obvious non-linear constitutive relation and strain rate strengthening effect. The composites with ZnO nanowhiskers under dynamic loading have various failure modes and better mechanical properties.  相似文献   

4.
A surface wave of frequency lying within bulk band of transverse waves is found in an elastic medium coated with a thin layer endowed with a surface mass density, surface Young's modulus and surface bending modulus. The wave is a particular case of surface resonance with infinite lifetime. In materials with negative Poisson's ratio (auxetics) the wave exists even for coating material with zero bending modulus, whereas with positive Poisson's ratio it requires the surface bending modulus to be larger than the surface Young's modulus. The manifestation of this wave in the reflection coefficient seems promising for fabrication of devices showing monochromator properties.  相似文献   

5.
Semiconductor nanowires are unique as functional building blocks in nanoscale electrical and electromechanical devices. Here, we report on the mechanical properties of ZnO nanowires that range in diameter from 18 to 304 nm. We demonstrate that in contrast to recent reports, Young's modulus is essentially independent of diameter and close to the bulk value, whereas the ultimate strength increases for small diameter wires, and exhibits values up to 40 times that of bulk. The mechanical behavior of ZnO nanowires is well described by a mechanical model of bending and tensile stretching.  相似文献   

6.
Materials’ endurance to mechanical stress is desirable from a technological point of view. In particular, in the case of silica aerogels, an improvement of the material elasticity is needed for some applications. Carbon–silica aerogel composites have been obtained and their mechanical properties, Young’s modulus, elastic parameter and hardness, have been evaluated with a dynamical, non-destructive microindentation technique. Large changes are found in Young’s modulus when only a small amount of carbon is added. This is clearly shown in the shape of the indentation curves as well as in the increase of the elastic parameter value, which evaluates the percentage of elasticity versus plasticity. Young’s modulus values obtained for carbon–silica aerogels show a similar variation with the carbon mass fraction to that predicted by a commonly used model for composite materials. The measured hardness values corresponding to the total elastoplastic deformation do not show such a prominent dependency on the carbon mass fraction as the elastic parameter and Young’s modulus do and they are similar to those measured for the pure-silica aerogel. Received: 18 May 2001 / Accepted: 30 July 2001 / Published online: 30 October 2001  相似文献   

7.
The geometric, energetic, electronic structures and optical properties of ZnO nanowires (NWs) with hexagonal cross sections are investigated by using the first-principles calculation of plane wave ultra-soft pseudo-potential technology based on the density functional theory (DFT). The calculated results reveal that the initial Zn-O double layers merge into single layers after structural relaxations, the band gap and binding energies decrease with the increase of the ZnO nanowire size. Those properties show great dimension and size dependence. It is also found that the dielectric functions of ZnO NWs have different peaks with respect to light polarization, and the peaks of ZnO NWs exhibit a significant blueshift in comparison with those of bulk ZnO. Our results gives some reference to the thorough understanding of optical properties of ZnO, and also enables more precise monitoring and controlling during the growth of ZnO materials to be possible.  相似文献   

8.
The bulk modulus of nanowires (NWs) and its temperature dependence were determined by a simple and convenient method based on temperature-dependent X-ray diffraction (XRD) measurement. It was found that the bulk moduli for Ni, Cu, and Ag NWs were much higher than that for their counterpart bulk materials in the temperature range from 25 °C to 800 °C and the influence of temperature on the bulk modulus for NWs was stronger than that for their counterpart bulk materials. A surface bond contraction model and the force–interatomic-distance curves were introduced to explain the experimental results.  相似文献   

9.
Analysis of the bending modulus of individual silicon nitride nanobelts in elastic regime is reported here. The nanobelts have the size between 200∼800 nm in width, and thickness 20∼50 nm. Atomic force microscopy was used to image and to perform measurements of force versus bending displacement on individual nanobelts suspending over strips. The bending modulus Eb is deduced by comparison of the measured force curves on the substrate and on the suspending nanobelts. It is shown that the elastic modulus of the silicon nitride nanobelts is about 570 GPa, which is much larger than that of bulk and film of the silicon nitride material. The larger elastic modulus is ascribed to the fact there are less structural defects in the silicon nitride nanobelts. PACS 81.70.Bt; 81.40.Lm; 61.80.+g  相似文献   

10.
Studies on surface effects in nano-sized materials or structures are often based on the framework of linear membrane theory, in which the field jumps at the interface are characterized by the generalized Young–Laplace equation. Here a recently proposed theoretical framework of high-order surface stress is implemented in a continuum mechanics model to simulate the bending behavior of nanowires. The high-order surface stress considers not only the effect of in-plane membrane surface stresses, but also the surface moments induced from the non-uniform surface stress across the layer thickness. We investigate the extent to which the high-order surface stress will influence the bending behavior of nanowires deviated from that predicted by the generalized Young–Laplace equation. Closed-form expressions for the deflection curves are derived for nanowires with different boundary conditions. These solutions are utilized to characterize the size-dependent overall Young's moduli of NWs. We demonstrate that, in comparison to the reported experimental data, the present framework provides more accurate results than those by the conventional surface stress model. This study might be helpful to accurately characterize the behavior of bending nanowires in a wide range of applications.  相似文献   

11.
Single-crystalline ZnO nanowires (NWs) were synthesized by a facile vapor transport method. The good orientation and high crystal quality were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM) measurements. Excitation-power-dependence photoluminescence spectra of ZnO NWs show that the UV emission displayed an evident blueshift with increasing excitation power and the corresponding energy shift might be as large as 10 meV. This anomalous phenomenon correlates to the band bending level caused by the surface built-in electric field due to the existence of substantial oxygen vacancies. By increasing the excitation power, the enhanced neutralization effect near the surface will reduce the built-in electric field and lead to a reduction of band bending which triggers the blueshift of the UV emission.  相似文献   

12.
胡杰  邓霄  桑胜波  李朋伟  李刚  张文栋 《物理学报》2014,63(20):207102-207102
利用微流控技术在微通道中制备了Zn O纳米线阵列,通过X射线衍射和扫描电子显微镜分别对纳米线的物相和表面形貌进行了表征.结果发现,合成的Zn O纳米线具有良好的c轴择优取向性和结晶度.同时,对Zn O纳米线阵列在丙酮、甲醇和乙醇气体中的气敏特性进行了研究,测试结果表明:在最佳工作温度(475?C)下,纳米线阵列对200 ppm(1 ppm=10-6)丙酮气体的最大灵敏度可达8.26,响应恢复时间分别为9和5 s;通过与传统水热法制备的Zn O纳米线的气敏性能相比较发现,基于微流控技术制备的纳米线阵列具有更高的灵敏度和更快的响应恢复速度.最后,从材料表面氧气分子得失电子的角度对Zn O纳米线气敏机理进行了讨论.  相似文献   

13.
Zinc oxide nanowires (ZnO NWs) were synthesized using a simple reactive-evaporation method without the use of catalysts. The NWs growth was precisely controlled by adjusting the experimental conditions mainly growth times and substrate temperatures. These experimental parameters are crucial for the growth of NWs. The typical diameter and length of the highly crystalline NWs obtained are several tens and several hundred nanometers, respectively. The nature of early-stages growth, morphology, structure and photoluminescent properties of the NWs grown at low temperatures have been explained and give the basic reasons behind these growth mechanisms. Self-organized ZnO nuclei are primarily formed on FTO pits due to high density of Zn atoms. It can be ascribed to vapour-solid with an area selected growth of NWs which provide a continuous pathway for carrier transport due to direct contact with the substrate. These features are crucial for the application of electronic devices, solar cells, etc.  相似文献   

14.
A real-time nanomanipulation technique inside a scanning electron microscope (SEM) has been used to investigate the elastic and frictional (tribological) properties of zinc oxide nanowires (NWs). A NW was translated over a surface of an oxidised silicon wafer using a nanomanipulator with a glued atomic-force microscopic tip. The shape of the NW elastically deformed during the translation was used to determine the distributed kinetic friction force. The same NW was then positioned half-suspended on edges of trenches cut by a focused ion beam through a silicon wafer. In order to measure Young’s modulus, the NW was bent by pushing it at the free end with the tip, and the interaction force corresponding to the visually observed bending angle was measured with a quartz tuning fork force sensor.  相似文献   

15.
Zinc oxide nanowires (ZnO NWs) were grown by a two-step growth method, involving the deposition of a patterned ZnO thin seeding layer and the chemical vapor deposition (CVD) of ZnO NWs. Two ways of patterning the seed layer were performed. The seeding solution containing ZnO precursors was deposited by sol–gel/spin-coating technique and patterned by photolithography. In the other case, the seeding solution was directly printed by inkjet printing only on selected portion of the substrate areas. In both cases, crystallization of the seed layer was achieved by thermal annealing in ambient air. Vertically aligned ZnO NWs were then grown by CVD on patterned, seeded substrates. The structure and morphology of ZnO NWs was analyzed by means of X-ray diffraction and field emission scanning electron microscopy measurements, respectively, while the vibrational properties were evaluated through Raman spectroscopy. Results showed that less-defective, vertically aligned, c-axis oriented ZnO NWs were grown on substrates patterned by photolithography while more defective nanostructures were grown on printed seed layer. A feature size of 30 µm was transferred into the patterned seed layer, and a good selectivity in growing ZnO NWs was obtained.  相似文献   

16.
To increase the sensitivity in surface‐enhanced Raman scattering (SERS) measurements, the high surface area of zinc oxide nanowires (ZnO NWs) was used. ZnO NWs on silicon substrates were prepared and used as substrates for further growth of silver nanoparticles (AgNPs). Ultraviolet (UV) irradiation was used to reduce silver ions to AgNPs on the ZnO wires. With proper growth conditions for both ZnO NWs and AgNPs, the substrates exhibit SERS enhancement factors greater than 106. To understand the influences of the morphologies of the ZnO NWs on the growth of AgNPs, the growing time and temperature were varied. The concentration of silver nitrate and irradiation time of UV radiation were also varied. The resulting AgNPs were probed with para‐nitrothiophenol to quantify the SERS enhancements obtained from the varying conditions. The results indicate that ZnO NWs could be grown at temperatures higher than 490 °C and higher growth temperatures result in smaller diameter of the formed ZnO NWs. Also, the morphologies of ZnO NWs did not significantly alter the SERS signals. The concentration of silver nitrate affects the SERS signals significantly and the optimal concentration was found to be in the range of 10–20 mM. With irradiation times longer than 90 s, the resulting AgNPs showed similar SERS intensities. With optimized conditions, the AgNPs/ZnO substrates are highly suitable for SERS measurements with a typical enhancement factor of higher than 106. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In this article, mechanical properties of single-walled carbon nanotubes (SWCNTs) with various radiuses under tensile, compressive and lateral loads are considered. Stress–strain curve, elastic modulus, tensile, compressive and rotational stiffness, buckling behaviour, and critical axial compressive load and pressure of eight different zigzag and armchair SWCNTs are investigated to figure out the effect of radius and chirality on mechanical properties of nanotubes. Using molecular dynamic simulation (MDS) method, it can be explained that SWCNTs have higher Young’s modulus and tensile stiffness than compressive elastic modulus and compressive stiffness. Critical axial force of zigzag SWCNT is independent from the radius, but that of armchair type rises by increasing of radius, also these two types show different buckling modes.  相似文献   

18.
In this report an analysis is made of the behavior of sandwich beams in which the core polymer is laminated on both sides with surface metal sheets, each of which has a different thickness and mechanical properties when they are loaded with a uniform bending moment which is then released resulting in springback of the bent sandwich beam. It is assumed that the polymer behaves elastically because the bending strain in the core is small and its elastic limit is much larger than that of metals. Sandwich beams have various elastoplstic stess distributions when bent depending on the mutual relationships between their dimensions, the mechanical moduli, and the applied bending moment. Further, residual curvatures, shifting position of neutral axis, and residual stress distributions in sandwich beams variously elastoplastically stressed initially on the decrease of applied bending moment are analyzed.  相似文献   

19.
A modified continuum model of the nanoscale multilayered beams is established by incorporating surface and interface energies. Through the principle of minimum potential energy, the governing equations and boundary conditions are obtained. The closed-form solutions are presented and the overall Young's modulus of the beam is studied. The surface and interface energies are found to have a major influence on the bending behavior and the overall Young's modulus of the beam. The effect of surface and interface energies on the overall Young's modulus depends on the boundary condition of the beam, the values of the surface/interface elasticity constants and the initial surface/interface energy of the system. The results can be used to guide the determinations of the surface/interface elasticity properties and the initial surface/interface energies of the nanoscale multilayered materials through nanoscale beam bending experiments.  相似文献   

20.
A new process fabricating micro parts of thin metal foils by laser shock waves with forming/blanking compound die is reported in this article, in which flexible rubber material was used as the soft punch to act on the thin metal sheet. Systematic studies were carried out experimentally on the process with different laser energies and materials. The formed parts were examined in terms of their morphology, surface roughness, forming depth and mechanical properties (including nanohardness, plasticity and elastic modulus) characterized by nanoindentation test. According to the results, the ablation states of confinement medium and the surface roughness of the different regions change with energies. Additionally, the proper energies are necessary to form complex parts and the forming process can be applied to manufacture parts with good surface quality. What׳s more, the nanoindentation test results showed that the nanohardness, plasticity and elastic modulus of material were increased after impact. The increase in nanohardness and plasticity can attribute to higher stiffness of the parts. The enhanced elastic modulus indicates an increased stiffness of the parts, providing an evidence for the reduced spring back of copper during laser shocking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号