首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this note a dual problem is formulated for a given class of disjunctive linear fractional programming problems. This result generalizes to fractional programming the duality theorem of disjunctive linear programming originated by Balas. Two examples are given to illustrate the result.  相似文献   

2.
We consider linear programming problems with some equality constraints. For such problems, surrogate relaxation formulations relaxing equality constraints existwith zero primal-dual gap both when all variables are restricted to be integers and when no variable is required to be integer. However, for such surrogate formulations, when the variables are mixed-integer, the primal-dual gap may not be zero. We establish this latter result by a counterexample.  相似文献   

3.
A necessary and sufficient condition is given for the disjunctive constraints construction to provide all valid cuts for a system of logical constraints on linear inequalities. This condition is then applied to several commonly occurring situations of integer programming, and the issue of verification of the condition is discussed.This research was supported by NSF Grant No. GP-37510 X1 and ONR Contract No. N00014-75-C-0621, NR047-048.  相似文献   

4.
We produce a duality theorem for the minimum of an arbitrary family of convex programs. This duality theorem provides a single concave dual maximization and generalizes recent work in linear disjunctive programming. Homogeneous and symmetric formulations are studied in some detail, and a number of convex and nonconvex applications are given.This work was partially funded by National Research Council of Canada, Grant No. A4493. Thanks are due to Mr. B. Toulany for many conversations and to Dr. L. MacLean who suggested the chance-constrained model.  相似文献   

5.
Generalized disjunctive programming (GDP), originally developed by Raman and Grossmann (1994), is an extension of the well-known disjunctive programming paradigm developed by Balas in the mid 70s in his seminal technical report (Balas, 1974). This mathematical representation of discrete-continuous optimization problems, which represents an alternative to the mixed-integer program (MIP), led to the development of customized algorithms that successfully exploited the underlying logical structure of the problem. The underlying theory of these methods, however, borrowed only in a limited way from the theories of disjunctive programming, and the unique insights from Balas’ work have not been fully exploited.In this paper, we establish new connections between the fields of disjunctive programming and generalized disjunctive programming for the linear case. We then propose a novel hierarchy of relaxations to the original linear GDP model that subsumes known relaxations for this model, and show that a subset of these relaxations are tighter than the latter. We discuss the usefulness of these relaxations within the context of MIP and illustrate these results on the classic strip-packing problem.  相似文献   

6.
We propose a framework to generate alternative mixed-integer nonlinear programming formulations for disjunctive convex programs that lead to stronger relaxations. We extend the concept of “basic steps” defined for disjunctive linear programs to the nonlinear case. A basic step is an operation that takes a disjunctive set to another with fewer number of conjuncts. We show that the strength of the relaxations increases as the number of conjuncts decreases, leading to a hierarchy of relaxations. We prove that the tightest of these relaxations, allows in theory the solution of the disjunctive convex program as a nonlinear programming problem. We present a methodology to guide the generation of strong relaxations without incurring an exponential increase of the size of the reformulated mixed-integer program. Finally, we apply the theory developed to improve the computational efficiency of solution methods for nonlinear convex generalized disjunctive programs (GDP). This methodology is validated through a set of numerical examples.  相似文献   

7.
This paper is about a property of certain combinatorial structures, called sequential convexifiability, shown by Balas (1974, 1979) to hold for facial disjunctive programs. Sequential convexifiability means that the convex hull of a nonconvex set defined by a collection of constraints can be generated by imposing the constraints one by one, sequentially, and generating each time the convex hull of the resulting set. Here we extend the class of problems considered to disjunctive programs with infinitely many terms, also known as reverse convex programs, and give necessary and sufficient conditions for the solution sets of such problems to be sequentially convexifiable. We point out important classes of problems in addition to facial disjunctive programs (for instance, reverse convex programs with equations only) for which the conditions are always satisfied. Finally, we give examples of disjunctive programs for which the conditions are violated, and so the procedure breaks down.The research underlying this report was supported by Grant ECS-8601660 of The National Science Foundation and Contract N00014-85-K-0198 with the Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the U.S. Government.On leave from the University of Aarhus, Denmark.  相似文献   

8.
The usual theory of duality for linear fractional programs is extended by replacing the linear functions in the numerator and denominator by arbitrary positively homogeneous convex functions. In the constraints, the positive orthant inR n is replaced by an arbitrary cone. The resultant duality theorem contains a recent result of Chandra and Gulati as a special case.The authors wish to thank the referee for a number of valuable suggestions, particularly improvements in Theorem 3.4 and Corollary 3.1.  相似文献   

9.
We show a Lagrange-type duality theorem for a DC programming problem, which is a generalization of previous results by J.-E. Martínez-Legaz, M. Volle [5] and Y. Fujiwara, D. Kuroiwa [1] when all constraint functions are real-valued. To the purpose, we decompose the DC programming problem into certain infinite convex programming problems.  相似文献   

10.
A specialization of unconstrained duality (involving problems without explicit constraints) to constrained duality (involving problems with explicit constraints) provides an efficient mechanism for extending to the latter many important theorems that were previously established for the former.This research was sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant No. AFOSR-73-2516.  相似文献   

11.
12.
In this paper a dual problem for nonconvex linear programs with absolute value functionals is constructed by means of a max-min problem involving bivalent variables. A relationship between the classical linear max-min problem and a linear program with absolute value functionals is developed. This program is then used to compute the duality gap between some max-min and min-max linear problems.  相似文献   

13.
To aggregate constraints is a technique for solving the integer programming problem. In this note we modify a result of Zionts (1974); without this modification, there is a counterexample for Zionts' result. Further, we give an elegant theorem which considers the aggregation of nonlinear constraints.This work was partially supported by the Chinese National Science Council.  相似文献   

14.
We study Lagrange duality theorems for canonical DC programming problems. We show two types Lagrange duality results by using a decomposition method to infinite convex programming problems and by using a previous result by Lemaire (1998)  [6]. Also we observe these constraint qualifications for the duality theorems.  相似文献   

15.
本文研究锥约束不可微多目标规划的Mond-Weir 型高阶对称对偶问题. 本文指出Agarwal 等人(2010) 和Gupta 等人(2010) 工作的不足, 给出规划问题的强对偶和逆对偶定理.  相似文献   

16.
《Optimization》2012,61(6):535-543
In this article we discuss weak and strong duality properties of convex semi-infinite programming problems. We use a unified framework by writing the corresponding constraints in a form of cone inclusions. The consequent analysis is based on the conjugate duality approach of embedding the problem into a parametric family of problems parameterized by a finite-dimensional vector.  相似文献   

17.
In this paper we consider solution methods for multiobjective integer programming (MOIP) problems based on scalarization. We define the MOIP, discuss some common scalarizations, and provide a general formulation that encompasses most scalarizations that have been applied in the MOIP context as special cases. We show that these methods suffer some drawbacks by either only being able to find supported efficient solutions or introducing constraints that can make the computational effort to solve the scalarization prohibitive. We show that Lagrangian duality applied to the general scalarization does not remedy the situation. We also introduce a new scalarization technique, the method of elastic constraints, which is shown to be able to find all efficient solutions and overcome the computational burden of the scalarizations that use constraints on objective values. Finally, we present some results from an application in airline crew scheduling as evidence. This research is partially supported by University of Auckland grant 3602178/9275 and by the Deutsche Forschungsgemeinschaft grant Ka 477/27-1.  相似文献   

18.
A nonconvex mixed-integer programming formulation for the Euclidean Steiner Tree Problem (ESTP) in Rn is presented. After obtaining separability between integer and continuous variables in the objective function, a Lagrange dual program is proposed. To solve this dual problem (and obtaining a lower bound for ESTP) we use subgradient techniques. In order to evaluate a subgradient at each iteration we have to solve three optimization problems, two in polynomial time, and one is a special convex nondifferentiable programming problem. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The optimization of a linear function on a closed convex set,F, can be stated as a linear semi-infinite program, sinceF is the solution set of (usually) infinite linear inequality systems, the so-called linear representations ofF. The duality properties of these programs are analyzed when the linear representation ofF ranges in some well known classes of linear inequality systems. This paper provides propositions on the duality diagrams of Farkas-Minkowski, canonically closed, compact and closed systems. Converse statements are also given.
Zusammenfassung Die Optimierung einer linearen Funktion auf einer konvexen abgeschlossenen MengeF kann als semi-infinites lineares Programm aufgefaßt werden, daF als Durchschnitt (unendlich) vieler Halbräume dargestellt werden kann. Es werden Dualitätseigenschaften dieser Programme untersucht, wobei von verschiedenen linearen Darstellungen fürF ausgegangen wird. Die Arbeit enthält Sätze über Dualitätsbeziehungen von Farkas-Minkowski, kanonisch abgeschlossene, kompakte und abgeschlossene Systeme. Es werden auch umgekehrte Beziehungen angegeben.
  相似文献   

20.
A class of multiobjective fractional programming problems is considered and duality results are established in terms of properly efficient solutions of the primal and dual programs. Further a vector-valued ratio type Lagrangian is introduced and certain vector saddlepoint results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号