首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In this paper an important problem in chaos control theory concerningthe possibility of generating a new stable periodic solutionby a small feedback control law for a dynamical system is addressed.It is proved that a solution with an initial point being somekind of non-wandering property can become a new asymptoticallystable solution by a small feedback control law. This showsthat the popular opinion that a small control law is not ableto create a new periodic point is untrue, and suggests a newapproach to controlling chaos.  相似文献   

2.
The study of transitions in low dimensional, nonlinear dynamical systems is a complex problem for which there is not yet a simple, global numerical method able to detect chaos–chaos, chaos–periodic bifurcations and symmetry-breaking, symmetry-increasing bifurcations. We present here for the first time a general framework focusing on the symmetry concept of time series that at the same time reveals new kinds of recurrence. We propose several numerical tools based on the symmetry concept allowing both the qualification and quantification of different kinds of possible symmetry. By using several examples based on periodic symmetrical time series and on logistic and cubic maps, we show that it is possible with simple numerical tools to detect a large number of bifurcations of chaos–chaos, chaos–periodic, broken symmetry and increased symmetry types.  相似文献   

3.
Stochastic chaos discussed here means a kind of chaotic responses in a Duffing oscillator with bounded random parameters under harmonic excitations. A system with random parameters is usually called a stochastic system. The modifier ‘stochastic’ here implies dependent on some random parameter. As the system itself is stochastic, so is the response, even under harmonic excitations alone. In this paper stochastic chaos and its control are verified by the top Lyapunov exponent of the system. A non-feedback control strategy is adopted here by adding an adjustable noisy phase to the harmonic excitation, so that the control can be realized by adjusting the noise level. It is found that by this control strategy stochastic chaos can be tamed down to the small neighborhood of a periodic trajectory or an equilibrium state. In the analysis the stochastic Duffing oscillator is first transformed into an equivalent deterministic nonlinear system by the Gegenbauer polynomial approximation, so that the problem of controlling stochastic chaos can be reduced into the problem of controlling deterministic chaos in the equivalent system. Then the top Lyapunov exponent of the equivalent system is obtained by Wolf’s method to examine the chaotic behavior of the response. Numerical simulations show that the random phase control strategy is an effective way to control stochastic chaos.  相似文献   

4.
In this paper the problem of chaos control in single mode lateral oscillations of spinning disks is studied. At first, using the harmonic balance method, one of the periodic orbits of system is evaluated. Then proposing a nonlinear feedback strategy a control law is presented for chaos elimination by tracking the mentioned periodic solution. It is shown that although the system is not input-state feedback linearizable, by defining an output signal and using the input–output linearization method, the objective of complete periodic orbit tracking is achieved. The sufficient condition for this purpose is presented, and the performance of proposed method is examined by numerical simulation.  相似文献   

5.
For a continuous map φ:XX of a compact metric space, we study relations between distributional chaos and the existence of a point which is quasi-weakly almost periodic, but not weakly almost periodic. We provide an example showing that the existence of such a point does not imply the strongest version of distributional chaos, DC1. Using this we prove that, even in the class of triangular maps of the square, there are no relations to DC1. This result, among others, contributes to the solution of a problem formulated by A.N. Sharkovsky in the eighties.  相似文献   

6.
In this paper, we investigate a three trophic level food chain system with Holling II functional responses and periodic constant impulsive perturbations of top predator. Conditions for extinction of predator as a pest are given. By using the Floquet theory of impulsive equation and small amplitude perturbation skills, we consider the local stability of predator eradication periodic solution. Further, influences of the impulsive perturbation on the inherent oscillation are studied numerically, which shows the rich dynamics (for example: period doubling, period halfing, chaos crisis) in the positive octant. The dynamics behavior is found to be very sensitive to the parameter values and initial value.  相似文献   

7.
In this paper, considering the strategy of integrated Pest Management (IPM), a class of two-prey two-predator system with the Ivlev-type functional response and impulsive effect at different fixed time is established. By using impulsive comparison theorem, Floquent theory and small amplitude perturbation skill, the sufficient conditions for the system to be extinct of prey and permanence are proved. Moreover, we give two sufficient conditions for the extinction of one of two prey and remaining three species are permanent. Numerical simulation shows that there exist complex dynamics for system, such as symmetry-breaking pitchfork bifurcation, periodic doubling bifurcation, chaos, periodic halving cascade. Lastly, a brief discussion is given.  相似文献   

8.
The dynamics of cardiovascular rhythms have been widely studied due to the key aspects of the heart in the physiology of living beings. Cardiac rhythms can be either periodic or chaotic, being respectively related to normal and pathological physiological functioning. In this regard, chaos control methods may be useful to promote the stabilization of unstable periodic orbits using small perturbations. In this article, the extended time-delayed feedback control method is applied to a natural cardiac pacemaker described by a mathematical model. The model consists of a modified Van der Pol equation that reproduces the behavior of this pacemaker. Results show the ability of the chaos control strategy to control the system response performing either the stabilization of unstable periodic orbits or the suppression of chaotic response, avoiding behaviors associated with critical cardiac pathologies.  相似文献   

9.
The immersed boundary (IB) method is a computational framework for problems involving the interaction of a fluid and immersed elastic structures. It is characterized by the use of a uniform Cartesian mesh for the fluid, a Lagrangian curvilinear mesh on the elastic material, and discrete delta functions for communication between the two grids. We consider a simple IB problem in a two‐dimensional periodic fluid domain with a one‐dimensional force generator. We obtain error estimates for the velocity field of the IB solution for the stationary Stokes problem. We use this result to prove convergence of a simple small‐amplitude dynamic problem. We test our error estimates against computational experiments. © 2007 Wiley Periodicals, Inc.  相似文献   

10.
The dynamic behavior of a stage-structure prey–predator model with cannibalism for prey and periodic attacking rate for predator is investigated. Firstly, the permanence, locally and globally asymptotic stability analyses of the model with constant attacking rate are explored. After that, sufficient conditions for the permanence of the corresponding nonautonomous system with periodic attacking rate are obtained. Furthermore, numerical simulations are presented to illustrate the effects of periodic attacking rate. Simulation results show that the system with periodic attacking rate shows a rich behaviors, including period-doubling and period-having bifurcations, chaos and windows of periodicity.  相似文献   

11.
A body Ω floating in a fluid is subjected to small periodic displacement. Under idealized conditions the resulting wave pattern can be described by a linear boundary value problem for the Laplacian in an unbounded domain with a non-coercive boundary condition on part of the boundary. Nevertheless uniqueness can be shown if Ω is confined to certain subsets of the fluid which can be described explicitly. This extends a result of V. G. Maz'ja saying that uniqueness holds provided that the exterior normal for ?Ω avoids certain directions.  相似文献   

12.
In this work, a linear stability analysis is used to investigate a capillary surface waves between two horizontal finite fluid layers. The system is acted upon by a vertical periodic electric field. The problem examines few representatives of porous media. It is also includes finite conductivity, mass and heat transfer. It is assumed that the basic flow is two-dimensional streaming flow. A general dispersion relation governing the linear stability is derived. In contrast with our previous work [23], the present problem shows that the stability criterion depends on the mass and heat transfer parameter. The present study recovers some special cases upon appropriate data choices. The presence of finite conductivity’s together with the dielectric permeability’s make the uniform electric field plays a dual role in the stability criterion. This shows some analogy with the nonlinear stability theory. In addition, the mass and heat transfer parameter as well as the Darcy’s coefficients play a stabilizing role in the stability picture. In case of the Rayleigh–Taylor instability, by means of the Whittaker technique, the parametric excitation of the electrohydrodynamic surface waves is obtained. The transition curve equations are calculated up to the fourth order for a small dimensionless parameter. The analytical results are numerically confirmed.  相似文献   

13.
14.
15.
The dynamic behaviour of an industrial Type IV fluid catalytic cracking for the production of gasoline unit is investigated for a case where the air feed temperature is periodically forced. The investigation concentrates on the behaviour of the system for a case of bistability for the autonomous system with special emphasis on the effect of forcing on the periodic attractor of the autonomous system. When the centre of forcing is very close to the homoclinical termination point of the autonomous periodic attractor, period-doubling mechanism and Type 1 intermittency have been identified as the routes to chaos for this six-dimensional (6D) system. Chaotic behaviour occurs at very low forcing amplitudes which simulate small disturbances that are unavoidable in the operation of any industrial unit. While in certain ranges of the values of the forcing amplitudes the output amplitudes of the forced system are higher than their counterparts in the autonomous system, other regions show the opposite behaviour. Average gasoline yield in the bistability region for the attractor resulting from the forcing of the autonomous periodic attractor is much higher than that resulting from forcing the autonomous static attractor. This yield is very close to that obtained with the optimum steady state which is unstable and requires prohibitively high values of controller gains to be stabilized.  相似文献   

16.
Given an ideal incompressible heavy irrotational fluid, we consider the exact statement of the problem on gravitational-capillary surface waves of small amplitude travelling along an underwater ridge. We show that, under some requirements on the shape of the bottom and the surface tension, the equations of an ideal incompressible fluid have smooth solutions periodic in the variable directed along the underwater ridge and decreasing exponentially with a small positive exponent in the perpendicular direction.  相似文献   

17.
In this paper, we have examined effects of forcing a periodic Colpitts oscillator with periodic and chaotic signals for different values of coupling factors. The forcing signal is generated in a master bias-tuned Colpitts oscillator having identical structure as that of the slave periodic oscillator. Numerically solving the system equations, it is observed that the slave oscillator goes to chaotic state through a period-doubling route for increasing strengths of the forcing periodic signal. For forcing with chaotic signal, the transition to chaos is observed but the route to chaos is not clearly detectable due to random variations of the forcing signal strength. The chaos produced in the slave Colpitts oscillator for a chaotic forcing is found to be in a phase-synchronized state with the forced chaos for some values of the coupling factor. We also perform a hardware experiment in the radio frequency range with prototype Colpitts oscillator circuits and the experimental observations are in agreement with the numerical simulation results.  相似文献   

18.
Tama?evi?ius et al. proposed a simple 3D chaotic oscillator for educational purpose. In fact the oscillator can be implemented very easily and it shows typical bifurcation scenario so that it is a suitable training object for introductory education for students. However, as far as we know, no concrete studies on bifurcations or applications on this oscillator have been investigated. In this paper, we make a thorough investigation on local bifurcations of periodic solutions in this oscillator by using a shooting method. Based on results of the analysis, we study chaos synchronization phenomena in diffusively coupled oscillators. Both bifurcation sets of periodic solutions and parameter regions of in-phase synchronized solutions are revealed. An experimental laboratory of chaos synchronization is also demonstrated.  相似文献   

19.
The motion of an incompressible viscous fluid in a thin layer between two circular cylinders, inserted into one another, with parallel axes is investigated. The cylinders rotate relative to one another about an axis parallel to the axes of the cylinders. The stream function of the unsteady plane-parallel flow that occurs is found by solving the boundary-value problem for the equations of hydrodynamic lubrication theory. The motion of the fluid particles is found from the solution of a non-autonomous time-periodic Hamiltonian system with a Hamiltonian equal to the stream function. The positions of fluid particles over time intervals that are a multiple of the period of rotation (Poincaré points) are calculated. The set of points is investigated using a Poincaré mapping on the phase flow. The observed transition to chaotic motion is related to the mixing of the fluid particles and is investigated both numerically and using a mapping, calculated with an accuracy up to the third power of the small eccentricity. The optimum mode of motion is observed when the area of the mixing (chaos) region reaches its highest value.  相似文献   

20.
In this paper, we propose an SIS epidemic model for which population births occur during a single period of the year. Using the discrete map, we obtain exact periodic solutions of system which is with Ricker function. The existence and stability of the infection-free periodic solution and the positive periodic solution are investigated. The Poincaré map, the center manifold theorem and the bifurcation theorem are used to discuss flip bifurcation and bifurcation of the positive periodic solution. Numerical results imply that the dynamical behaviors of the epidemic model with birth pulses are very complex, including small-amplitude periodic 1 solution, large-amplitude multi-periodic cycles, and chaos. This suggests that birth pulse, in effect, provides a natural period or cyclicity that allow for a period-doubling route to chaos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号