首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Developments in ion mobility spectrometry–mass spectrometry   总被引:4,自引:0,他引:4  
Ion mobility spectrometry (IMS) has been used for over 30 years as a sensitive detector of organic compounds. The following is a brief review of IMS and its principles with an emphasis on its usage when coupled to mass spectrometry. Since its inception, IMS has been interfaced with quadrupole, time-of-flight, and Fourier-transform ion cyclotron resonance mass spectrometry. These hybrid instruments have been employed for the analysis of a variety of target analytes, including biomolecules, explosives, chemical warfare degradation products, and illicit drugs.  相似文献   

2.
This paper describes the development of an optimized method based on solid-phase extraction (SPE) followed by liquid chromatography–electrospray ionization tandem mass spectrometry (LC–MS/MS) for the simultaneous analysis of ten antibiotic compounds including tetracyclines, sulfonamides, macrolides and quinolones. LC–MS/MS sensitivity has been optimized by alterations to both LC and MS operations. Of the two high resolution columns tested, Waters Symmetry C18 endcapped and Agilent Zorbax Bonus-RP, the latter was found to show better performance in producing sharp peaks and clear separation for most of the target compounds. Optimization of the MS fragmentation collision and cone energy enhanced the peak areas of the target analytes. The recovery of the target compounds from water samples was most efficient on Waters Oasis HLB SPE cartridge, while methanol was shown to be the most suitable solvent for desorbing the compounds from SPE. In addition, acidification of samples prior to SPE was shown to enhance the recovery of the compounds. To ensure a satisfactory recovery, the flow rate through SPE should be maintained at ≤10 mL min−1. The method was successfully applied to the analysis of antibiotics from environmental water samples, with concentrations being <LOD in tap water, between <LOD to 28 ng L−1 in river water and between <LOD to 230 ng L−1 in sewage effluent.  相似文献   

3.
4.
Four different organic solvents: dimethylformamide, 1,4-dioxane, n-propanol and ethanol were evaluated as alternative organic modifiers to acetonitrile for liquid chromatography (LC) separations. The aim was to establish common sets of chromatographic conditions that could be applied for LC hyphenation to inductively coupled plasma mass spectrometry (ICPMS) as well as to electrospray ionization MS (ESIMS). The approach was to evaluate candidate solvents that, compared to acetonitrile, potentially could give improved analytical performance (low solvent vapor loading, maximized analyte sensitivity and minimized carbon depositions on instrumental parts) in ICPMS analysis while retaining chromatographic and ESIMS performances. The study showed that dimethylformamide, 1,4-dioxane, n-propanol and ethanol all can be advantageous chromatographic modifiers for LC–ICPMS analysis, giving superior performance compared to acetonitrile. For the combined use of LC–ICPMS and LC–ESIMS with a common set of chromatographic conditions, n-propanol gave the best overall performance. The 195Pt+ signal in ICPMS was continuously monitored during a 0–60% organic solvent gradient and at 25% of organic modifier, 100% of the signal obtained at the gradient start was preserved for n-propanol compared to only 35% of the signal when using acetonitrile. Platinum detection limits were 5–8 times lower using n-propanol compared with acetonitrile. Signal-to-noise ratio in continuous ESIMS signal measurements was 100, 90 and 110 for a 100 μg/ml solution of leucine–enkephaline using acetonitrile, ethanol and n-propanol, respectively. Chromatographic efficiency in reversed phase separations was preserved for n-propanol compared to acetonitrile for the analysis of the whole protein cytochrome C and the peptide bacitracin on a column with particle and pore sizes of 5 μm and 300 Å, but slightly deteriorated for the separation of the peptides leucine–enkephaline and bacitracin on a 3 μm and 90 Å column as the peak width at half height for both peptides increased by a factor of two. The performance on the smaller dimensioned column could however be improved by running the separations at 40 °C.  相似文献   

5.
Polyatomic ions, often considered as causing interference in ICP-MS, SSMS and GDMS, are useful in thermal ionisation mass spectrometry (TIMS) for determining the atomic ratios of the elements, particularly for light elements. The objective of this paper is to provide a detailed discussion on the handling of the isotopic measurement data in TIMS using polyatomic ions, a useful technique for light elements, to reduce isotope fractionation effects. Taking as an example the Li2BO2+ ion for the determination of the 6Li/7Li or 10B/11B ratio of the unknown sample, a detailed theoretical analysis is presented for optimum selection of the pair of polyatomic ions to be used to determine the isotopic ratio of the element. The theory is supported by experimental data from the literature in three different examples: (i) the isotopic analysis of natural Li samples using the SRM-951-B isotopic standard; (ii) the isotopic analysis of an enriched 6Li sample using SRM-951-B; (iii) the isotopic analysis of an enriched 10B sample using natural Li (Svec standard). It is shown that the four polyatomic peaks observed in the m/z range of 54–57 are of practical importance. A qualitative idea can be obtained about the isotopic composition of Li and B in the sample (natural or enriched) based on the intensity distribution of these four peaks in the mass spectrum. When calculating accurate atomic ratios from the observed intensities of the polyatomic peaks, a simple “rule of thumb” should be kept in mind: the polyatomic ratio that is closer to the expected atomic ratio provides an accurate value of the atomic ratio of the element in the unknown sample. Even between the two polyatomic ion ratios, better accuracy is possible in cases which do not magnify the error during calculation and show less isotopic fractionation in the ion source. It has been stressed that the two peaks of highest intensity in the polyatomic ion are not necessarily the best for arriving at atomic ratios during the analyses of unknown samples, for depleted as well as enriched 6Li and 10B samples.  相似文献   

6.
The ability of ion mobility spectrometry coupled with mass spectrometry (IMS-MS) to characterize biological mixtures has been illustrated over the past eight years. However, the challenges posed by the extreme complexity of many biological samples have demonstrated the need for higher resolution IMS-MS measurements. We have developed a higher resolution ESI-IMS-TOF MS by utilizing high-pressure electrodynamic ion funnels at both ends of the IMS drift cell and operating the drift cell at an elevated pressure compared with that conventionally used. The ESI-IMS-TOF MS instrument consists of an ESI source, an hourglass ion funnel used for ion accumulation/injection into an 88 cm drift cell, followed by a 10 cm ion funnel and a commercial orthogonal time-of-flight mass spectrometer providing high mass measurement accuracy. It was found that the rear ion funnel could be effectively operated as an extension of the drift cell when the DC fields were matched, providing an effective drift region of 98 cm. The resolution of the instrument was evaluated at pressures ranging from 4 to 12 torr and ion mobility drift voltages of 16 V/cm (4 torr) to 43 V/cm (12 torr). An increase in resolution from 55 to 80 was observed from 4 to 12 torr nitrogen drift gas with no significant loss in sensitivity. The choice of drift gas was also shown to influence the degree of ion heating and relative trapping efficiency within the ion funnel.  相似文献   

7.
Previously, the unusual ion composition [M + Fe - 5H]2- had been proposed as the major species observed when a gamma-carboxy glutamate-containing glyco-peptide was analyzed with electrospray ionization in the negative ionization mode. The sequence assignment of this highly post-translationally modified peptide was based on the mass analysis using a quadrupole ion trap together with information from both Edman and DNA sequencing. Because there was little precedent for the loss of five protons from a ferric cationized peptide, we utilized Fourier transform mass spectrometry accurate mass and tandem mass spectrometry analyses to verify the peptide ion composition.  相似文献   

8.
This study used reversed-phase liquid chromatography–tandem mass spectrometry and supercritical fluid chromatography–tandem mass spectrometry for determination of the stereoisomers of chlorfenvinphos and dimethylvinphos in tobacco. Tobacco samples were extracted and purified with a modified quick, easy, cheap, effective, rugged, and safe technique using spherical carbon. The performance of both methodologies was comprehensively compared in terms of methods validation parameters (separation efficiency, linearity, selectivity, recovery, repeatability, sensitivity, matrix effect, etc.). Under optimized conditions, the calibration curves of the stereoisomers of chlorfenvinphos and dimethylvinphos in the range of 10–500 ng/mL showed excellent linearity with R2 ≥ 0.997 in both methods. The adequate recoveries of analytes from three different spiked tobaccos were obtained using reversed-phase liquid chromatography–tandem mass spectrometry (86.1–95.7%) as well as supercritical fluid chromatography–tandem mass spectrometry (86.5–94.0%). The relative standard deviations for spiked samples were all below 7.0%. Compared with supercritical fluid chromatography–tandem mass spectrometry, lower matrix effects and LODs can be obtained in reversed-phase liquid chromatography–tandem mass spectrometry.  相似文献   

9.
The ionization and transmission efficiencies of an electrospray ionization (ESI) interface were investigated to advance the understanding of how these factors affect mass spectrometry (MS) sensitivity. In addition, the effects of the ES emitter distance to the inlet, solution flow rate, and inlet temperature were characterized. Quantitative measurements of ES current loss throughout the ESI interface were accomplished by electrically isolating the front surface of the interface from the inner wall of the heated inlet capillary, enabling losses on the two surfaces to be distinguished. In addition, the ES current lost to the front surface of the ESI interface was spatially profiled with a linear array of 340-microm-diameter electrodes placed adjacent to the inlet capillary entrance. Current transmitted as gas-phase ions was differentiated from charged droplets and solvent clusters by measuring sensitivity with a single quadrupole mass spectrometer. The study revealed a large sampling efficiency into the inlet capillary (>90% at an emitter distance of 1 mm), a global rather than a local gas dynamic effect on the shape of the ES plume resulting from the gas flow conductance limit of the inlet capillary, a large (>80%) loss of analyte ions after transmission through the inlet arising from incomplete desolvation at a solution flow rate of 1.0 microL/min, and a decrease in analyte ions peak intensity at lower temperatures, despite a large increase in ES current transmission efficiency.  相似文献   

10.
Over the last two decades, coupled capillary electrophoresis (CE)–mass spectrometry (MS) has developed into a generally accepted technique with a wide applicability. A growing number of CE-MS applications make use of capillaries where the internal wall is modified with surface coating agents. In CE-MS, capillary coatings are used to prevent analyte adsorption and to provide appropriate conditions for CE-MS interfacing. This paper gives an overview of the various capillary coating strategies used in CE-MS. The main attention is devoted to the way coatings can contribute to a proper CE-MS operation. The foremost capillary coating methods are discussed with emphasis on their compatibility with MS detection. The role of capillary coatings in the control of the electroosmotic flow and the consequences for CE-MS coupling are treated. Subsequently, an overview of reported applications of CE-MS employing different coating principles is presented. Selected examples are given to illustrate the usefulness of the coatings and the overall applicability of the CE-MS systems. It is concluded that capillary coatings can enhance the performance and stability of CE-MS systems, yielding a highly valuable and reproducible analytical tool.  相似文献   

11.
Over the past five years, an increasing number of studies have been published on supercritical fluid chromatography (SFC) and combined supercritical fluid chromatography—mass spectrometry (SFC—MS), demonstrating their advantages for the separation and analysis of non-volatile or thermally labile compounds. Further technological developments are expected to make SFC (and specially SFC—MS) a puissant, routine analytical tool that is complementary to gas chromatography (GC) (and GC—MS) and liquid chromatography (LC) (and LC—MS). Because of supercritical fluid properties, SFC—MS may be more easily implemented than LC—MS and better performance may be obtained for some types of substances or when complex mixtures must be analysed.  相似文献   

12.
Diosmin is a flavonoid often administered in the treatment of chronic venous insufficiency, hemorrhoids, and related affections. Diosmin is rapidly hydrolized in the intestine to its aglicone, diosmetin, which is further metabolized to conjugates. In this study, the development and validations of three new methods for the determination of diosmetin, free and after enzymatic deconjugation, and of its potential glucuronide metabolites, diosmetin-3-O-glucuronide, diosmetin-7-O-glucuronide, and diosmetin-3,7-O-glucuronide from human plasma and urine are presented. First, the quantification of diosmetin, free and after deconjugation, was carried out by high-performance liquid chromatography coupled with tandem mass spectrometry, on an Ascentis RP-Amide column (150?×?2.1 mm, 5 μm), in reversed-phase conditions, after enzymatic digestion. Then glucuronide metabolites from plasma were separated by micro-liquid chromatography coupled with tandem mass spectrometry on a HALO C18 (50?×?0.3 mm, 2.7 μm, 90 Å) column, after solid-phase extraction. Finally, glucuronides from urine were measured using a Discovery HSF5 (100?×?2.1 mm, 5 μm) column, after simple dilution with mobile phase. The methods were validated by assessing linearity, accuracy, precision, low limit of quantification, selectivity, extraction recovery, stability, and matrix effects; results in agreement with regulatory (Food and Drug Administration and European Medicines Agency) guidelines acceptance criteria were obtained in all cases. The methods were applied to a pharmacokinetic study with diosmin (450 mg orally administered tablets). The mean C max of diosmetin in plasma was 6,049.3?±?5,548.6 pg/mL. A very good correlation between measured diosmetin and glucuronide metabolites concentrations was obtained. Diosmetin-3-O-glucuronide was identified as a major circulating metabolite of diosmetin in plasma and in urine, and this finding was confirmed by supplementary experiments with differential ion-mobility mass spectrometry.  相似文献   

13.
Non-enzymatic posttranslational modifications of bovine serum albumin (BSA) by various oxo-compounds (glucose, ribose, glyoxal and glutardialdehyde) have been investigated using high-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). Both of these methods used mass spectrometric (MS) detection. Three enzymes (trypsin, pepsin, proteinase K) were used to digest glycated BSA. The extent of modification depended on the selected oxo-compound. Reactivity increased progressively from glucose to glutardialdehyde (glucose < ribose < glyoxal < glutardialdehyde). Carboxymethylation of lysine (CML) was the main type of modification detected. The HPLC/MS method achieved higher coverage and a larger amount of CML was identified compared to CZE/MS.  相似文献   

14.
Fast atom bombardment mass spectrometry (FAB-MS) is applied to distinguish N-terminal series ions from C-terminal series ions of a peptide by on-probe acetylation, it providesvaluable information about the sequence of an unknown peptide. The FAB mass spectra containa number of characteristic ions at low-mass region in addition to the sequence ions at high-massregion. It was found that the ions below m/z 200 are characteristic of the amino acid composition ofthe peptide, from which the amino acid composition of the peptide could be estimated. Additionally,mixture analysis is also discussed.  相似文献   

15.
A novel, specific and sensitive non-immunological liquid chromatography–mass spectrometry (LC–MS) based assay has been developed to detect and quantify trace levels of wheat gluten in food and consumer products. Detection and quantification of dietary gluten is important, because gluten is a principle trigger of a variety of immune diseases including food allergies and intolerances. One such disease, celiac sprue, can cause intestinal inflammation and enteropathy in patients who are exposed to dietary gluten. At present, immunochemistry is the leading analytical method for gluten detection in food. Consequently, enzyme-linked immunosorbent assays (ELISAs), such as the sandwich or competitive type assays, are the only commercially available methods to ensure that food and consumer products are accurately labeled as gluten-free. The availability of a comprehensive, fast and economic alternative to the immunological ELISA may also facilitate research towards the development of new drugs, therapies and food processing technologies to aid patients with gluten intolerances and for gluten-free labeling and certification purposes. LC–MS is an effective and efficient analytical technique for the study of cereal grain proteins and to quantify trace levels of targeted dietary gluten peptides in complex matrices. Initial efforts in this area afforded the unambiguous identification and structural characterization of six unique physiologically relevant wheat gluten peptides. This paper describes the development and optimization of an LC–MS/MS method that attempts to provide the best possible accuracy and sensitivity for the quantitative detection of trace levels of these six peptides in various food and consumer products. The overall performance of this method was evaluated using native cereal grains. Experimental results demonstrated that this method is capable of detecting and quantifying select target peptides in food over a range from 10 pg/mg to 100 ng/mg (corresponding to approximately 0.01–100 ppm). Limits of detection (LOD) and quantification (LOQ) for the six target peptides were determined to range from 1 to 30 pg/mg and 10–100 pg/mg respectively. Reproducibility of the assay was demonstrated by evaluation of calibration data as well as data collected from the analysis of quality control standards over a period of four consecutive days. The average coefficient of determination (R2) for each peptide was consistently found to be >0.995 with residuals ranging from approximately 80% to 110%. Spike recovery data for each peptide in various matrices was evaluated at a concentration level near the approximate LOQ for each, as well as at higher concentration levels (30 and 60 ng/mg). The average range of accuracy of detection for all peptides at the lower concentration level was determined to be 90% (±11), while accuracy at the 30 and 60 ng/mg levels was 98% (±5%) and 98% (±3%), respectively. The usefulness and capabilities of this method are presented in a practical application to prospectively screen a variety of common commercially available (native and processed) gluten-containing and gluten-free foods and products.  相似文献   

16.
Differential electrochemical mass spectrometry(DEMS)is one of the most powerful techniques for both the mechanistic and kinetic study of complicated electrocatalytic reactions.It can provide information on the nature and yields of the products generated,their production rate,and the structure-activity relationship between the electrocatalysts and the target reactions.The precise calibration of the mass signal is a prerequisite for the accurate evaluation of reaction kinetics.In this work,we use the oxidation reactions of CO and HCOOH to demonstrate how certain conditions,such as the flow rate and solution composition,affect the collection efficiency and ionization probability of the species to be detected.These parameters can affect the determination of the mass calibration constant and the accuracy of the subsequent quantitative DEMS analysis.We show the relationship between the mass calibration constant and the flow rate,and provide strategies for eliminating this and the related problems.  相似文献   

17.
This study presents gel permeation chromatography (GPC) coupled with mass spectrometry (MS) as a suitable method to evaluate molecular weight distribution, oligomeric structure, and additives of commercial polystyrene resins in just 4?min. The chromatogram recorded by ultraviolet (UV) detection gives information on the high molecular mass fractions, while the mass detector provides knowledge on the chemical structure and concentration of oligomers and additives. A good agreement for the average molecular weights of the broad polystyrene reference SRM 706 and an excellent correlation with the expected isotope distributions for oligomers and additives were obtained using this fast GPC–UV–MS method.  相似文献   

18.
This paper reviews multi-analyte single-stage and tandem liquid chromatography–mass spectrometry (LC-MS) procedures using different mass analyzers (quadrupole, ion trap, time-of-flight) for screening, identification, and/or quantification of drugs, poisons, and/or their metabolites in blood, plasma, serum, or urine published after 2004. Basic information about the biosample assayed, work-up, LC column, mobile phase, ionization type, mass spectral detection mode, and validation data of each procedure is summarized in tables. The following analytes are covered: drugs of abuse, analgesics, opioids, sedative-hypnotics, benzodiazepines, antidepressants including selective-serotonin reuptake inhibitors (SSRIs), herbal phenalkylamines (ephedrines), oral antidiabetics, antiarrhythmics and other cardiovascular drugs, antiretroviral drugs, toxic alkaloids, quaternary ammonium drugs and herbicides, and dialkylphosphate pesticides. The pros and cons of the reviewed procedures are critically discussed, particularly, the need for studies on matrix effects, selectivity, analyte stability, and the use of stable-isotope labeled internal standards instead of unlabeled therapeutic drugs. In conclusion, LC-MS will probably become a gold standard for detection of very low concentrations particularly in alternative matrices and for quantification in clinical and forensic toxicology. However, some drawbacks still need to be addressed and finally overcome. Photos of LC-MS apparatus and typical samples suitable for toxicological analysis  相似文献   

19.
A sensitive and specific method for the quantitative determination of zearalenone (ZEN) and its major metabolites (α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), α-zearalanol (α-ZAL), β-zearalanol (β-ZAL) and zearalanone (ZAN)) in animal plasma using liquid chromatography combined with heated electrospray ionization (h-ESI) tandem mass spectrometry (LC–MS/MS) and high-resolution Orbitrap® mass spectrometry ((U)HPLC–HR–MS) is presented. The sample preparation was straightforward, and consisted of a deproteinization step using acetonitrile. Chromatography was performed on a Hypersil Gold column (50 mm × 2.1 mm i.d., dp: 1.9 μm, run-time: 10 min) using 0.01% acetic acid in water (A) and acetonitrile (B) as mobile phases.  相似文献   

20.
Amyloid-β (Aβ) in human plasma was detected and quantified by an antibody-free method, selected reaction monitoring mass spectrometry (SRM-MS) in the current study. Due to its low abundance, SRM-based quantification in 10 μL plasma was a challenge. Prior to SRM analysis, human plasma proteins as a whole were digested by trypsin and high pH reversed-phase liquid chromatography (RPLC) was used to fractionate the tryptic digests and to collect peptides, Aβ1–5, Aβ6–16, Aβ17–28 and Aβ29–40(42) of either Aβ1–40 or Aβ1–42. Among those peptides, Aβ17–28 was selected as a surrogate to measure the total Aβ level. Human plasma samples obtained from triplicate sample preparations were analyzed, obtaining 4.20 ng mL−1 with a CV of 25.3%. Triplicate measurements for each sample preparation showed CV of <5%. Limit of quantification was obtained as 132 pM, which corresponded to 570 pg mL−1 of Aβ1–40. Until now, most quantitative measurements of Aβ in plasma or cerebrospinal fluid have required antibody-based immunoassays. Since quantification of Aβ by immunoassays is highly dependent on the extent of epitope exposure due to aggregation or plasma protein binding, it is difficult to accurately measure the actual concentration of Aβ in plasma. Our diagnostic method based on SRM using a surrogate peptide of Aβ is promising in that actual amounts of total Aβ can be measured regardless of the conformational status of the biomarker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号