首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of transformation products (TPs) of pharmaceuticals in the environment is essentially a challenging task due to the lack of standards and the instrumental capabilities required to detect compounds (sometimes unknowns) that are produced under environmental conditions. In this work, we report the use of liquid chromatography/electrospray quadrupole time-of-flight mass spectrometry (LC/QTOF-MS/MS) as a tool for the identification of amoxicillin (AMX) and its main TPs in wastewater and river water samples. Laboratory degradation experiments of AMX were performed in both alkaline and acidic media in order to confirm that the expected transformation pathway in the aquatic media is through the β-lactam ring cleavage. A thorough study was carried out with both standards and real samples (wastewater and river water samples). Four compounds were identified as main TPs: both amoxicillin diketopiperacine-2',5' and amoxilloic acid diastereomers. Amoxilloic acid stereoisomers are reported for the first time in environmental matrices. The transformation product (5R)-amoxicillin diketopiperacine-2',5' was frequently detected in river waters. Besides, another AMX transformation product formed during analysis was also structurally elucidated for the first time (amoxicilloic acid methyl ester) via accurate mass measurements. Collected data show that although AMX is not present as such in environmental samples, different TPs occur. This study represent a valuable indicator of the potential of LC/QTOF-MS/MS for the identification and structural elucidation of TPs in the environment using accurate MS/MS experiments, enabling thus the recognition of the environmental transformation pathway.  相似文献   

2.
Until now, time-of-flight (TOF) mass analysers have only been very rarely used in pesticide residue analysis (PRA) of water samples. However, the inherent characteristics of TOF MS make these analysers well-suited to this field, mainly for qualitative purposes. Thus, the high sensitivity obtained from full-scan acquisition in comparison to other MS analysers and the high resolution of TOF MS suggest its suitability for screening purposes; it also increases the multiresidue capabilities of methods based on it and decreases the chance of recording false positives. Although these characteristics can also be helpful for quantification, confirmation and elucidation, some limitations on the use of TOF for these purposes have been observed. These limitations are more noticeable when dealing with samples containing very low analyte concentrations, which is the normal situation for PRA in water. The use of hybrid quadrupole–time-of-flight instruments (QTOF) minimises the limitations of TOF, facilitating the simultaneous detection and unequivocal confirmation of pesticides found in the sample. Additionally, the acquisition of accurate product ion full-scan mass spectra can help to elucidate the structures of unknown compounds. In this paper, the potential of TOF and QTOF hyphenated to liquid chromatography for PRA in water is explored, emphasizing both the advantages and limitations of this approach for screening, quantification, confirmation and elucidation purposes. Emphasis is placed on the determination of polar pesticides and transformation products—the analytes that fit well with LC–API–(Q)TOF MS technology.  相似文献   

3.
As a suitable way for routine screening of pesticides and control of other organic contaminants in water, the combination of liquid chromatography triple quadrupole tandem mass spectrometry (LC–QqQ-MS/MS) and liquid chromatography–hybrid quadrupole time-of-flight mass spectrometry (LC–QTOF-MS) has been applied to the analysis of 63 surface and waste water samples after conventional solid-phase extraction (SPE). The extracts were screened for 43 pesticides or degradation products by LC–QqQ-MS/MS achieving limits of detection (LOD) ranged from 0.04 to 2 ng L−1. Of the 43 selected pesticides, 33 were detected in water samples. The ESI–QTOF MS instrument was run using two simultaneous acquisition functions with low and high collision energy (MSE approach) and acquiring the full mass spectra. A home-made database containing more than 1100 organic pollutants was used for substance identification. Around 250 of these compounds were available at the laboratory as reference standards. Five pesticides and 3 of their degradation products, different to those selected in the QqQ method, were detected by QqTOF-MS. Thirteen pharmaceuticals and two drugs of abuse were also identified in the samples. In practice, the sample preparation proved to be suitable for both techniques and for a wide variety of substances with different polarity. Mutual confirmation and evidence of co-occurrence of several other organic contaminants were the main advantages of the combination of both techniques.  相似文献   

4.
A new method based on ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry ((Q-ToF)-MS) was developed for the analysis of 32 biologically active compounds including anti-inflammatories, analgesics, lipid regulators, psychiatric drugs, anti-ulcer agents, antibiotics, beta-blockers and phytoestrogens. This new method allows chromatographic analysis in 14 min, with instrumental detection limits from 2 to 84 pg, and limits of quantification ranging from 0.1 to 15 ng/L in tap water, and from 2 to 300 ng/L in wastewater. The potential of liquid chromatography with triple quadrupole mass spectrometry (LC/QqQ-MS) was compared with that of UPLC/(Q-ToF)-MS for the analysis of biologically active compounds in water samples. LC/Q-ToF provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. The available mass resolution of ToF instruments diminishes the problem of isobaric interferences and helps the analysis of trace compounds in complex samples. In this work UPLC/Q-ToF chromatograms were recorded containing full scan spectral data. The m/z values of analytes were extracted from the total ion chromatogram (TIC) and the accurate masses of the compounds were obtained. In addition, to increase the selectivity of ToF measurements a narrow accurate mass interval (20 m m/z units mass window) was used to reconstruct the chromatographic traces. However, regarding quantitative performance in terms of dynamic range and limits of detection (LODs), typical LODs achieved by QqQ instruments operating in multiple-reaction monitoring (MRM) mode ranged from 1 to 50 ng/L in wastewater, and the linear response for QqQ instruments generally covers three orders of magnitude. This is an important advantage over ToF instruments and one of the reasons why QqQ instruments are widely used in quantitative environmental analysis.  相似文献   

5.
This paper gives an overview of the potentials of liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QqTOF) in the environmental analysis. Examples of applications of QqTOF instruments for target analysis of pharmaceuticals and pesticides are presented and discussed, as well as applications aimed on the identification of unknown compounds present in environmental waters or on the elucidation of structures of biodegradation and photodegradation products. Specific issues such as uncertainty of mass measurement and quantitative performances are discussed in details.  相似文献   

6.
A lipidomics strategy, combining high resolution reversed-phase liquid chromatography (RPLC) with high resolution quadrupole time-of-flight mass spectrometry (QqTOF), is described. The method has carefully been assessed in both a qualitative and a quantitative fashion utilizing human blood plasma. The inherent low technical variability associated with the lipidomics method allows to measure 65% of the features with an intensity RSD value below 10%. Blood plasma lipid spike-in experiments demonstrate that relative concentration differences smaller than 25% can readily be revealed by means of a t-test. Utilizing an advanced identification strategy, it is shown that the detected features mainly originate from (lyso-)phospholipids, sphingolipids, mono-, di- and triacylglycerols and cholesterol esters. The high resolution offered by the up-front RPLC step further allows to discriminate various isomeric species associated with the different lipid classes. The added value of utilizing a Jetstream electrospray ionization (ESI) source over a regular ESI source in lipidomics is for the first time demonstrated. In addition, the application of ultra high performance LC (UHPLC) up to 1200 bar to extend the peak capacity or increase productivity is discussed.  相似文献   

7.
The herbicide bromacil has been extensively used in the Spanish Mediterranean region, and although plant protection products containing bromacil have been withdrawn by the European Union, this compound is still frequently detected in surface and ground water of this area. However, the fast and complete disappearance of this compound has been observed in water intended for human consumption, after it has been subjected to chlorination. There is a concern about the possible degradation products formed, since they might be present in drinking water and might be hazardous. In this work, the sensitive full‐spectrum acquisition, high resolution and exact mass capabilities of hybrid quadrupole time‐of‐flight (QTOF) mass spectrometry have allowed the discovery and proposal of structures of transformation products (TPs) of bromacil in water subjected to chlorination. Different ground water samples spiked at 0.5 µg/mL were subjected to the conventional chlorination procedure applied to drinking waters, sampling 2‐mL aliquots at different time intervals (1, 10 and 30 min). The corresponding non‐spiked water was used as control sample in each experiment. Afterwards, 50 μL of the water was directly injected into an ultra‐high‐pressure liquid chromatography (UHPLC)/electrospray ionization (ESI)‐(Q)TOF system. The QTOF instrument enabled the simultaneous recording of two acquisition functions at different collision energies (MSE approach): the low‐energy (LE) function, fixed at 4 eV, and the high‐energy (HE) function, with a collision energy ramp from 15 to 40 eV. This approach enables the simultaneous acquisition of both parent (deprotonated and protonated molecules) and fragment ions in a single injection. The low mass errors observed for the deprotonated and protonated molecules (detected in LE function) allowed the assignment of a highly probable molecular formula. Fragment ions and neutral losses were investigated in both LE and HE spectra to elucidate the structures of the TPs found. For those compounds that displayed poor fragmentation, product ion scan (MS/MS) experiments were also performed. On processing the data with specialized software (MetaboLynx), four bromacil TPs were detected and their structures were elucidated. To our knowledge, two of them had not previously been reported. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Liquid chromatography (LC) coupled to hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) is a useful analytical tool in the elucidation and confirmation of transformation products (TPs)/metabolites of pesticides with a wide range of polarity, in both environmental and biological samples. Firstly, the versatility of LC allows the determination of very distinct TPs/metabolites as chromatographic conditions can be easily changed and optimized depending on the analytical problem. Secondly, the mass accuracy provided by the TOF analyser allows the assignment of a highly probable empirical formula for each compound and the differentiation between nominal isobaric compounds. Finally, the possibility of performing MS/MS spectra with accurate mass measurements can been used for the final characterization of the TPs/metabolites detected and for the differentiation of isomeric compounds. In this study, the insecticide diazinon was used as model compound, and its photodegradation and metabolism have been investigated by LC-QTOF-MS. On one hand, environmental spiked water was irradiated with a mercury lamp for 9 days, sampling 3-mL aliquots approximately every 12 h. On the other hand, both in vitro and in vivo metabolism experiments were carried out with different substrate concentrations and incubation times. After centrifugation, and protein precipitation in the in vitro and in vivo studies, 50-μL aliquots of both environmental and biological samples were directly injected into the LC electrospray ionization QTOF system. The most important transformation processes were found to be hydrolysis of the ester moiety, hydroxylation in the aromatic ring or in one of the alkylic groups, oxidation of the sulfur atom on the P=S cleavage or a combination of these processes, with the highest number of compounds being found in the photodegradation study. Very polar compounds, such as diethyl phosphate and diethyl thiophosphate, were detected after direct injection of the aqueous sample, which was feasible owing to the characteristics of the LC. In MS mode, mass errors were below 3 mDa, leading to an empirical formula for each compound. MS/MS spectra with accurate mass were used for the final elucidation of the compounds detected.  相似文献   

9.
Zhao C  Wu Z  Xue G  Wang J  Zhao Y  Xu Z  Lin D  Herbert G  Chang Y  Cai K  Xu G 《Journal of chromatography. A》2011,1218(23):3669-3674
Nanoflow liquid chromatography/mass spectrometry (nano-LC/MS) has attracted increasing interest in virtue of high sensitivity, low sample consumption, and minimal matrix effect. In this work a HPLC-Chip/quadrupole time-of-flight (Q-TOF) MS device with a new ultra-high capacity small molecule chip (UHC-Chip) which features a 500 nL enrichment column and a 150 mm × 75 μm analytical column, was evaluated with a drug mixture covering a wide range of polarities. Excellent chromatographic precision with 0.1-0.5% RSD for retention time and 1.7-9.0% RSD for peak area, low limit of detection, good chip-to-chip reproducibility and linearity were obtained by using this UHC-Chip. Compared with the standard HPLC-Chip with 40 nL trapping column, the UHC-Chip showed higher enrichment capability and hence gave a higher response in signal detection. Additionally, 4-30 times increase in sensitivity was obtained compared with conventional LC/MS, which indicated that UHC-Chip/MS was a valuable tool for the quantitative analysis of low level impurities and degradation products in pharmaceuticals. Moreover, satisfactory results obtained from trace drug analysis of serum samples further proved its practicality and potential for use in drug testing and development.  相似文献   

10.
The removal of bottlenecks in discovery stage metabolite identification studies is an ongoing challenge for the pharmaceutical industry. We describe the use of an 'All-in-One' approach to metabolite characterization that leverages the fast scanning and high mass accuracy of hybrid quadrupole time-of-flight mass spectrometry (QqToFMS) instruments. Full-scan MS and MS/MS data is acquired using collision energy switching without the preselection, either manually or in a data-dependent manner, of precursor ions. The acquisition of 'clean' MS/MS data is assisted by the use of ultrahigh-performance chromatography. Data acquired using this method can then be mined post-acquisition in a number of ways. These include using narrow window extracted ion chromatograms (nwXICs) for expected biotransformations, XICs for the product ions of the parent compound and/or expected modification of these product ions, and neutral loss chromatograms. This approach has the potential to be truly comprehensive for the determination of in vitro biotransformations in a drug discovery environment.  相似文献   

11.
Rhodamine B and its five de‐ethylated transformation products could be identified in a groundwater sample. Using high‐performance thin‐layer chromatography (HPTLC) six fluorescent zones were detected in the sample. In order to identify the compounds in the zones by exact mass mass spectrometry (MS) measurements and tandem mass spectrometry (MS/MS), they were extracted from the HPTLC plate for subsequent analysis by nano‐chip high‐performance liquid chromatography quadrupole‐time‐of‐flight mass spectrometry (nano‐chip HPLC/QTOFMS). In addition, chemical derivatisation experiments on HPTLC plates were applied to detect the presence of a primary amino group in the transformation products. From the combined analytical results it was possible to allocate rhodamine B and its five de‐ethylated transformation products to the six different HPTLC zones. The quantification of rhodamine B in different groundwater samples was carried out by a high‐performance liquid chromatography/triple quadrupole mass spectrometry (HPLC/MS/MS). The maximum detected concentration of rhodamine B was 83 µg L?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The structural elucidation of by-products arising from carbofuran photodegradation using a high-pressure UV lamp has been investigated by liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) employing a quadrupole time-of-flight mass spectrometer. Exact mass measurements of the [M + H]+ ions of the by-products and of product ions allowed the elemental formulae and related structures of seven photodegradation by-products (resulting, respectively, from photo-Fries rearrangement, hydroxylation of the benzene ring, oxidation of the 2,3-dihydrobenzofuran ring, cleavage of the carbamate group, hydrolysis of the ether group and the newly observed radical coupling and decarboxylation processes) to be determined confidently. Accurate mass measurements of product ions allowed ambiguities to be removed concerning neutral losses having the same nominal mass, namely CO and C2H4, allowing the fragmentation patterns to be rationalized.  相似文献   

13.
14.
Ultra-performance liquid chromatography (UPLC) utilizes sub-2 microm particles with high linear solvent velocities to effect dramatic increases in resolution, sensitivity and speed of analysis. The reduction in particle size to below 2 microm requires instrumentation that can operate at pressures in the 6000-15,000 psi range. The typical peak widths generated by the UPLC system are in the order of 1-2 s for a 10-min separation. In the present work this technology has been applied to the study of in vivo drug metabolism, in particular the analysis of drug metabolites in bile. The reduction in peak width significantly increases analytical sensitivity by three- to five-fold, and the reduction in peak width, and concomitant increase in peak capacity, significantly reduces spectral overlap resulting in superior spectral quality in both MS and MS/MS modes. The application of UPLC/MS resulted in the detection of additional drug metabolites, superior separation and improved spectral quality.  相似文献   

15.
Glutathione S-transferases (GSTs) isolated from maize were used to catalyze the conjugation of glutathione (GSH) with chloroacetanilide herbicides, producing stable conjugates that were structurally characterized using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QqToF-MS) and liquid chromatography/ion trap mass spectrometry (LC/IT-MS). Enzyme-mediated dechlorination of alachlor, metolachlor, and propachlor resulted during GSH conjugation as revealed by the mass spectra of the conjugates, which was confirmed by the loss of the chlorine isotopic signature and from high accurate mass measurements. Several fragmentation patterns in the mass spectra of the chloroacetanilide-GSH conjugates can be used to verify the identities of the enzyme reaction products, such as characteristic ions corresponding to the neutral loss of glutamic acid residue (129 Da) and water (18 Da) observed in the product ion spectrum. For the first time, data are presented showing detection of chloroacetanilides that are conjugated with two GSH molecules, in addition to the known single GSH conjugates.  相似文献   

16.
In this paper we report about the biodegradation of the beta-blocker atenolol and the hypoglycaemic agent glibenclamide. The biodegradation tests were performed in batch reactors under aerobic conditions, using as inocculums sewage sludge from a conventional activated sludge treatment and a laboratory-scale membrane bioreactor. Pharmaceuticals were used as sole carbon sources, spiked at 50ng/L and 10mg/L concentrations. Quadrupole time-of-flight mass spectrometry coupled to ultra-high-pressure liquid chromatograph was used for the screening and the structural elucidation of biodegradation products. A microbial metabolite of atenolol with [M+H](+) at 268 was detected in the positive electrospray ionization mode. This new compound was determined to be a product of microbial hydrolysis of the amide of the parent compound. Biodegradation of glibenclamide by activated sludge proceeded via bacterial hydroxylation of the cyclohexyl ring, which resulted in formation of metabolite with a protonated molecule, [M+H](+)=510. MS(3) experiments performed by hybrid quadrupole linear ion trap (QqLIT) mass spectrometry coupled to high-performance liquid chromatography enabled further structural elucidation of the identified metabolites. Moreover, the highly sensitive QqLIT instrument in the MRM mode enabled the detection of parent compounds and one of the microbial metabolites identified in real wastewater samples. The methodology used in this study permitted for the first time the identification and detection of biodegradation product of beta-blocker atenolol in real wastewater samples.  相似文献   

17.
Findings of illegal hormone preparations such as syringes, bottles, cocktails, and so on, are an important information source for the nature of the current abuse of anabolic steroids and related compounds as growth-promoting agents in cattle. A new screening method for steroids in cocktails is presented based on liquid chromatography (LC) with diode-array UV-absorbance detection and electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS). Accurate mass measurements were performed at a mass resolution of 4000 using continuous introduction of a lock mass through a second (electro)sprayer. Similar experiments were carried out using dual-sprayer quadrupole time-of-flight mass spectrometry (ESI-QTOFMS/MS) at a mass resolution of 10 000 with data-dependent MS/MS acquisition; i.e. beyond an intensity threshold for the [M + H](+) ions, MS/MS spectra were automatically acquired at three different collision energies. Elemental compositions were calculated for precursor and product ions and it is shown that the combined information from LC retention behavior, UV spectra, elemental compositions, and accurate mass MS/MS spectra yield a fast impression of the steroids present in the complex mixture. Using a new software tool for structure elucidation of MS/MS spectra, an additional non-steroidal additive was identified as well.  相似文献   

18.
The application of sub-2 microm porous particle liquid chromatography (LC) operated at elevated temperatures, coupled with time-of-flight mass spectrometry (MS), to the separation and identification of metabolites of ibuprofen present in human urine following oral administrations is illustrated. The LC/MS system generated a high-resolution analytical separation that, with an analysis time of 20 min, provided a peak capacity in the order of ca. 350. Using this system a total of nine glucuronides of the drug and its metabolites were detected, including a number of isomeric acyl glucuronides of ibuprofen itself, a side-chain-oxidized carboxylic acid acyl glucuronide and a number of acyl glucuronides of various hydroxylated metabolites. The identities of the metabolites were confirmed by their accurate mass values and the presence of the common fragment ions from ibuprofen.  相似文献   

19.
The stability of the UV filter benzophenone-4 (BP-4) in free chlorine-containing water was investigated, for the first time, by liquid chromatography quadrupole time-of-flight mass spectrometry (LC–QqTOF-MS). High mass accuracy and resolution capabilities of this hybrid mass spectrometer were used for the reliable assignation of empirical formulae and chemical structures of BP-4 derivatives. Time-course profiles of the parent compound and its by-products were simultaneously recorded by direct injection of sample aliquots, after quenching the excess of chlorine, in the LC–QqTOF-MS system. At neutral pHs, in excess of chlorine, BP-4 showed a limited stability fitting a pseudo-first-order degradation kinetics. A noticeable reduction in the half-lives of BP-4 was observed when increasing the sample pH between 6 and 8 units and also in presence of bromide traces. The reaction pathway of this UV filter involved a first electrophilic substitution of hydrogen per chlorine (or bromide) in the phenolic ring, followed by oxidation of the carbonyl moiety to an ester group, which induced a further electrophilic substitution in the same aromatic ring. Above reactions were also noticed when mixing a BP-4 containing personal care product with chlorinated tap water and in chlorinated swimming pool and sewage water, previously spiked with a BP-4 standard.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号