首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydrophilic-interaction liquid chromatography–tandem mass spectrometry (HILIC–MS–MS) method was developed for the determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its metabolites in mouse liver and lung. The limits of detection of all analytes were in the range 0.017–0.057 ng mL?1, and recovery ranged from 88.4–119.8 % with intra and inter-day precision in the range 0.89–6.03 % and 1.01–6.97 %, respectively. This simple and accurate method was used to evaluate the effect of chronic alcohol consumption on NNK bioactivation in mouse tissue. Time-course curves for NNK and its metabolites were generated, and the areas under the curves (AUCs) were compared. It was found that target tissues of NNK carcinogenesis in C57BL/6 mice contained high levels of α-hydroxylation metabolites of NNK and its carbonyl reduction metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). The most pronounced effect of alcohol was to enhance α-hydroxylation of NNK in mouse lung and liver, which suggests that chronic alcohol consumption may increase the risk of carcinogenicity associated with NNK in mice.
Figure
?  相似文献   

2.
This study demonstrates an untested link between model phenolic compounds and the formation/electrophoretic separation of stable urinary metabolites. Sterically encumbered carbonyl groups were examined, and mass determination was used to confirm the presence and stability of two oxidative metabolites of pentachlorophenol: tetrachloro-1,2-benzoquinone and tetrachloro-1,4-dihydroquinone. Subsequently, baseline resolved separation of pentachlorophenol and the two oxidative metabolites was demonstrated under the following conditions: 75 mM sodium tetraborate buffer (pH?=?8.5) with 5 % methanol and 50 mM SDS, +10.0 kV running voltage, injection time?=?5.0 s, effective capillary length?=?55 cm, and run temperature?=?20 °C. Results not only provide key metabolic inferences for pentachlorophenol, they also exhibit improvements in the ability to separate and detect changes in urinary metabolites in response to phenolic-related exposure.
Figure
Metabolic pathway elucidation towards time- and dose-dependent electrophoretic screening of stable oxidative phenolic compounds. Establishing direct pathways and developing sensitive/selective analytical tools to measure and characterize xenobiotics provides a defined link between potential hazards and suspected health effects.  相似文献   

3.
In this paper, we describe data processing and metabolite identification approaches which lead to a rapid and semi-automated interpretation of metabolomics experiments. Data from metabolite fingerprinting using LC-ESI-Q-TOF/MS were processed with several open-source software packages, including XCMS and CAMERA to detect features and group features into compound spectra. Next, we describe the automatic scheduling of tandem mass spectrometry (MS) acquisitions to acquire a large number of MS/MS spectra, and the subsequent processing and computer-assisted annotation towards identification using the R packages MetShot, Rdisop, and the MetFusion application. We also implement a simple retention time prediction model using predicted lipophilicity logD, which predicts retention times within 42 s (6 min gradient) for most compounds in our setup. We putatively identified 44 common metabolites including several amino acids and phospholipids at metabolomics standards initiative (MSI) levels two and three and confirmed the majority of them by comparison with authentic standards at MSI level one. To aid both data integration within and data sharing between laboratories, we integrated data from two labs and mapped retention times between the chromatographic systems. Despite the different MS instrumentation and different chromatographic gradient programs, the mapped retention times agree within 26 s (20 min gradient) for 90 % of the mapped features.
Figure
Workflow for the rapid processing and annotation of untargeted mass spectrometry data  相似文献   

4.
Reproducible and quantitative gas chromatography–mass spectrometry (GC-MS)-based metabolomics analysis of complex biological mixtures requires robust and broad-spectrum derivatization. We have evaluated derivatization of complex metabolite mixtures using trimethylsilyl cyanide (TMSCN) and the most commonly used silylation reagent N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). For the comparative analysis, two metabolite mixtures, a standard complex mixture of 35 metabolites covering a range of amino acids, carbohydrates, small organic acids, phenolic acids, flavonoids and triterpenoids, and a phenolic extract of blueberry fruits were used. Four different derivatization methods, (1) direct silylation using TMSCN, (2) methoximation followed by TMSCN (M-TMSCN), (3) direct silylation using MSTFA, and (4) methoximation followed by MSTFA (M-MSTFA) were compared in terms of method sensitivity, repeatability, and derivatization reaction time. The derivatization methods were observed at 13 different derivatization times, 5 min to 60 h, for both metabolite mixtures. Fully automated sample derivatization and injection enabled excellent repeatability and precise method comparisons. At the optimal silylation times, peak intensities of 34 out of 35 metabolites of the standard mixture were up to five times higher using M-TMSCN compared with M-MSTFA. For direct silylation of the complex standard mixture, the TMSCN method was up to 54 times more sensitive than MSTFA. Similarly, all the metabolites detected from the blueberry extract showed up to 8.8 times higher intensities when derivatized using TMSCN than with MSTFA. Moreover, TMSCN-based silylation showed fewer artifact peaks, robust profiles, and higher reaction speed as compared with MSTFA. A method repeatability test revealed the following robustness of the four methods: TMSCN?>?M-TMSCN?>?M-MSTFA?>?MSTFA.
Figure
Improved GC-MS profiling of Complex Biological Mixtures by TMSCN based Derivatization  相似文献   

5.
Cell transfer by contact printing coupled with carbon-substrate-assisted laser desorption/ionization was used to directly profile and image secondary metabolites in trichomes on leaves of the wild tomato Solanum habrochaites. Major specialized metabolites, including acyl sugars, alkaloids, flavonoids, and terpenoid acids, were successfully detected in positive ion mode or negative ion mode, and in some cases in both modes. This simple solvent-free and matrix-free sample preparation for mass spectrometry imaging avoids tedious sample preparation steps, and high-spatial-resolution images were obtained. Metabolite profiles were generated for individual glandular trichomes from a single Solanum habrochaites leaf at a spatial resolution of around 50 μm. Relative quantitative data from imaging experiments were validated by independent liquid chromatography–mass spectrometry analysis of subsamples from fresh plant material. The spatially resolved metabolite profiles of individual glands provided new information about the complexity of biosynthesis of specialized metabolites at the cellular-resolution scale. In addition, this technique offers a scheme capable of high-throughput profiling of metabolites in trichomes and irregularly shaped tissues and spatially discontinuous cells of a given cell type.
Figure
?  相似文献   

6.

Background

PB-22 (1-pentyl-8-quinolinyl ester-1H-indole-3-carboxylic acid) and 5F-PB-22 (1-(5-fluoropentyl)-8-quinolinyl ester-1H-indole-3-carboxylic acid) are new synthetic cannabinoids with a quinoline substructure and the first marketed substances with an ester bond linkage. No human metabolism data are currently available, making it difficult to document PB-22 and 5F-PB-22 intake from urine analysis, and complicating assessment of the drugs’ pharmacodynamic and toxicological properties.

Methods

We incubated 10 μmol/l PB-22 and 5F-PB-22 with pooled cryopreserved human hepatocytes up to 3 h and analyzed samples on a TripleTOF 5600+ high-resolution mass spectrometer. Data were acquired via TOF scan, followed by information-dependent acquisition triggered product ion scans with mass defect filtering (MDF). The accurate mass full scan MS and MS/MS metabolite datasets were analyzed with multiple data processing techniques, including MDF, neutral loss and product ion filtering.

Results

The predominant metabolic pathway for PB-22 and 5F-PB-22 was ester hydrolysis yielding a wide variety of (5-fluoro)pentylindole-3-carboxylic acid metabolites. Twenty metabolites for PB-22 and 22 metabolites for 5F-PB-22 were identified, with the majority generated by oxidation with or without glucuronidation. For 5F-PB-22, oxidative defluorination occurred forming PB-22 metabolites. Both compounds underwent epoxide formation followed by internal hydrolysis and also produced a cysteine conjugate.

Conclusion

Human hepatic metabolic profiles were generated for PB-22 and 5F-PB-22. Pentylindole-3-carboxylic acid, hydroxypentyl-PB-22 and PB-22 pentanoic acid for PB-22, and 5′-fluoropentylindole-3-carboxylic acid, PB-22 pentanoic acid and the hydroxy-5F-PB-22 metabolite with oxidation at the quinoline system for 5F-PB-22 are likely the best targets to incorporate into analytical methods for urine to document PB-22 and 5F-PB-22 intake.
>Figure
Metabolism of synthetic cannabinoids PB-22 and 5F-PB-22 by human hepatocyte incubation and high-resolution mass spectrometry  相似文献   

7.
A hydrophilic interaction liquid chromatographic–tandem mass spectrometric (HILIC–MS–MS) method for investigation of the in vivo metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent carcinogen, in rabbit blood has been developed and validated. This method achieved excellent repeatability and accuracy. Recovery ranged from 76.9 to 116.3 % and precision (as RSD) between 0.53 and 6.52 %. Linearity was good for all compounds (R 2?>?0.9990) and the limit of detection (LOD) ranged from 0.016 to 0.082 ng mL?1. Pharmacokinetic analysis indicated that NNK was rapidly eliminated in vivo in rabbit blood and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was the major metabolite. The hydroxy acid, keto acid, and NNAL-N-oxide were also important metabolites in rabbit blood. It is probable that α-methylene hydroxylation was the major pathway of α-hydroxylation of NNK and NNAL in the rabbit.
Figure
The process of the experiment in this study. NNK solution was injected into rabbit body. Blood samples were obtained and processed, and then transferred into vials. NNK and its metabolites were separated by HILIC column. The ion source of MS is ESI and MRM mode was employed for monitoring ion pairs. The chromatogram of NNK and its metabolites was obtained.  相似文献   

8.
Platinum nanoparticles (Pt-NPs) with sizes in the range from 10 to 30 nm were synthesized using protein-directed one-pot reduction. The model globular protein bovine serum albumin (BSA) was exploited as the template, and the resulting BSA/Pt-NPs were studied by transmission electron microscopy, energy dispersive X-ray spectroscopy, and resonance Rayleigh scattering spectroscopy. The modified nanoparticles display a peroxidase-like activity that was exploited in a rapid method for the colorimetric determination of hydrogen peroxide which can be detected in the 50 μM to 3 mM concentration range. The limit of detection is 7.9 μM, and the lowest concentration that can be visually detected is 200 μM.
Figure
Pt-NPs were synthesized using BSA-directed one-pot reduction and BSA/Pt-NPs composite can effectively catalyze the oxidation of TMB producing blue solution in the presence of H2O2.  相似文献   

9.
Metabolomics has become an important tool in clinical research and the diagnosis of human disease. Intratracheal instillation of trans-trans 2,4-decadienal (tt-DDE), a major component in cooking oil fumes, has been demonstrated to cause lung lesions in mice at 8 weeks after treatment. The objective of this study was to identify any changes in metabolite profiles associated with the development of tt-DDE-induced lung lesions. Using a metabolomics strategy involving a liquid chromatography–mass spectrometry-based approach in conjunction with principal component analysis and confirmation by liquid chromatography triple quadrupole tandem mass spectrometry, we have demonstrated that the amino acid profiles of the urine and serum of tt-DDE-treated mice are changed. Ten amino acids were significantly reduced in serum of tt-DDE-treated mice at 8 weeks after treatment. Our results suggest that amino acid profiles may be useful as an early indicator of the presence of tt-DDE-induced lung lesions.
Figure
?  相似文献   

10.
We report on an electrode for the amperometric determination of lorazepam. A glassy carbon electrode was coated with a molecular imprint made by electropolymerization of ortho-phenylenediamine and filled with multiwalled carbon nanotubes and gold nanoparticles, which enhances the transmission of electrons. The sensor was studied with respect to its response to hexacyanoferrate (III) as a probe and by electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry. The linear response range to Lorazepam is from 0.5 nM to 1.0 nM and from 1.0 nM to 10.0 nM, with a detection limit of 0.2 nM (at an S/N of 3). The electrode was successfully applied to determine Lorazepam in spiked human serum.
Figure 1
The preparation of schematic of the AuNP/MIP/f?MWCNT/GCE electrode  相似文献   

11.
Macroporous reversed-phase (mRP) chromatography was successfully used to develop an accurate and precise method for total protein in serum. The limits of detection (0.83 μg, LOD) and quantification (2.51 μg, LOQ) for the mRP method are comparable with those of the widely used micro BCA protein assay. The mRP method can be used to determine the total protein concentration across a wide dynamic range by detecting chromatographic peaks at 215 nm and 280 nm. The method has the added advantage of desalting and denaturing proteins, leading to more complete digestion by trypsin and to better LC–MS–MS identification in shotgun proteomics experiments.
Figure
Simultaneous Serum Desalting and Total Protein Determination with Macroporous Reversed-Phase Chromatography: calibration plots  相似文献   

12.
A fully automated method consisting of microextraction by packed sorbent (MEPS) coupled directly to programmed temperature vaporizer–gas chromatography–mass spectrometry (PTV–GC–MS) has been developed to determine the 12 chlorobenzene congeners (chlorobenzene; 1,2-, 1,3-, and 1,4-dichlorobenzene; 1,2,3-, 1,2,4-, and 1,3,5-trichlorobenzene; 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrachlorobenzene; pentachlorobenzene; and hexachlorobenzene) in water samples. The effects of the variables on MEPS extraction, using a C18 sorbent, and the instrumental PTV conditions were studied. The internal standard 1,4-dichlorobenzene d4 was used as a surrogate. The proposed method afforded good reproducibility, with relative standard deviations (RSD %) lower than 12 %. The limits of detection varied between 0.0003 μg L?1 for 1,2,3,4-tetrachlorobenzene and 0.07 μg L?1 for 1,3- and 1,4-dichlorobenzene, while those of quantification varied between 0.001 μg L?1 and 0.2 μg L?1 for the same compounds. Accuracy of the proposed method was confirmed by applying it to the determination of chlorobenzenes in different spiked water samples, including river, reservoir, and effluent wastewater.
Figure
Experimental setup for automated MEPS methodology  相似文献   

13.
The combination of ultrahigh-resolution mass spectrometry imaging (UHRMSI) and ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) was used for the identification and the spatial localization of atorvastatin (AT) and its metabolites in rat tissues. Ultrahigh-resolution and high mass accuracy measurements on a matrix-assisted laser desorption/ionization (MALDI)-Orbitrap mass spectrometer allowed better detection of desired analytes in the background of matrix and endogenous compounds. Tandem mass spectra were also used to confirm the identification of detected metabolites in complex matrices. The optimization of sample preparation before imaging experiments included the tissue cryogenic sectioning (thickness 20 μm), the transfer to stainless steel or glass slide, and the selection of suitable matrix and its homogenous deposition on the tissue slice. Thirteen matrices typically used for small molecule analysis, e.g., 2,5-dihydroxybenzoic acid (DHB), 1,5-diaminonaphthalene (DAN), 9-aminoacridine (AA), etc., were investigated for the studied drug and its metabolite detection efficiency in both polarity modes. Particular matrices were scored based on the strength of extracted ion current (EIC), relative ratio of AT molecular adducts, and fragment ions. The matrix deposition on the tissue for the most suitable matrices was done by sublimation to obtain the small crystal size and to avoid local variations in the ionization efficiency. UHPLC/MS profiling of drug metabolites in adjacent tissue slices with the previously optimized extraction was performed in parallel to mass spectrometry imaging (MSI) measurements to obtain more detailed information on metabolites in addition to the spatial information from MSI. The quantitation of atorvastatin in rat liver, serum, and feces was also performed.
Figure
?  相似文献   

14.
The objective of this study was to compare the performance of an immunoassay screening for synthetic cannabinoids with a newly developed confirmation method using liquid chromatography quadrupole time-of-flight mass spectrometry. The screening included metabolites from JWH-018, JWH-073, and AM-2201. The confirmation included metabolites from AM-2201, JWH-018, JWH-019, JWH-073, JWH-081, JWH-122, JWH-210, JWH-250, JWH-398, MAM-2201, RCS-4, and UR-144. The immunoassay was tested and found to have no cross-reactivity with UR-144 metabolites but considerable cross-reactivity with MAM-2201 and JWH-122 metabolites. Sensitivity and specificity for the immunoassay were evaluated with 87 authentic urine samples and found to be 87 % and 82 %, respectively. With a cutoff at 2 ng/ml, the confirmation showed 80 positive findings in 38 cases. The most common finding was JWH-122 5-OH-pentyl, followed by JWH-018 5-OH-pentyl. There were 9 findings of UR-144 metabolites and 3 of JWH-073 metabolites. In summary, the immunoassay performed well, presenting both high sensitivity and specificity for the synthetic cannabinoids present in the urine samples tested. The rapid exchange of one cannabinoid for another may pose problems for immunoassays as well as for confirmation methods. However, we consider time-of-flight mass spectrometry to be superior since new metabolites can be quickly included and identified.
Figure
Spice metabolites in urine  相似文献   

15.
Dabigatran etexilate (DABE) is an oral prodrug that is rapidly converted by esterases to dabigatran (DAB), a direct inhibitor of thrombin. To elucidate the esterase-mediated metabolic pathway of DABE, a high-performance liquid chromatography/mass spectrometry based metabolite identification and semi-quantitative estimation approach was developed. To overcome the poor full-scan sensitivity of conventional triple quadrupole mass spectrometry, precursor–product ion pairs were predicted to search for the potential in vitro metabolites. The detected metabolites were confirmed by the product ion scan. A dilution method was introduced to evaluate the matrix effects on tentatively identified metabolites without chemical standards. Quantitative information on detected metabolites was obtained using “metabolite standards” generated from incubation samples that contain a high concentration of metabolite in combination with a correction factor for mass spectrometry response. Two in vitro metabolites of DABE (M1 and M2) were identified, and quantified by the semi-quantitative estimation approach. It is noteworthy that CES1 converts DABE to M1 while CES2 mediates the conversion of DABE to M2. M1 and M2 were further metabolized to DAB by CES2 and CES1, respectively. The approach presented here provides a solution to a bioanalytical need for fast identification and semi-quantitative estimation of CES metabolites in preclinical samples.
Figure
The scheme of the semi-quantitative estimation approach  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) and their alkylated derivatives, such as methylnaphthalenes (MeNs), are harmful pollutants ubiquitously present in the environment. Exposure to PAHs has been linked to a variety of adverse health effects and outcomes, including cancer. Alkyl PAHs have been proposed as petrogenic source indicators because of their relatively high abundance in unburned petroleum products. We report a method to quantify 11 urinary methylnaphthols (Me-OHNs), metabolites of 1- and 2-methylnaphthalenes, and 10 monohydroxy PAH metabolites (OH-PAHs), using automated liquid-liquid extraction and isotope dilution gas chromatography tandem mass spectrometry (GC-MS/MS). After spiking urine (1 mL) with 13C-labeled internal standards, the conjugated target analytes were hydrolyzed enzymatically in the presence of ascorbic acid. Then, their free species were preconcentrated into 20 % toluene in pentane, derivatized and quantified by GC-MS/MS. The 11 Me-OHNs eluted as 6 distinct chromatographic peaks, each representing 1???3 isomers. Method detection limits were 1.0? 41 pg/mL and the coefficients of variation in quality control materials were 4.7???19 %. The method was used to analyze two National Institute of Standards and Technology’s Standard Reference Materials® and samples from 30 smokers and 30 non-smokers. Geometric mean concentrations were on average 37 (Me-OHNs) and 9.0 (OH-PAHs) fold higher in smokers than in non-smokers. These findings support the usefulness of Me-OHNs as potential biomarkers of non-occupational exposure to MeNs and sources containing MeNs.
Figure
A gas chromatogram of a standard containing the trimethylsilyl derivatives of 11 methylnaphthols and 10 monohydroxylated PAHs (1 pg injection on column for 1- and 2-naphthol, 250 fg for the remaining analytes).  相似文献   

17.
An efficient method for analyzing illegal and medicinal drugs in whole blood using fully automated sample preparation and short ultra-high-performance liquid chromatography–tandem mass spectrometry (MS/MS) run time is presented. A selection of 31 drugs, including amphetamines, cocaine, opioids, and benzodiazepines, was used. In order to increase the efficiency of routine analysis, a robotic system based on automated liquid handling and capable of handling all unit operation for sample preparation was built on a Freedom Evo 200 platform with several add-ons from Tecan and third-party vendors. Solid-phase extraction was performed using Strata X-C plates. Extraction time for 96 samples was less than 3 h. Chromatography was performed using an ACQUITY UPLC system (Waters Corporation, Milford, USA). Analytes were separated on a 100 mm?×?2.1 mm, 1.7 μm Acquity UPLC CSH C18 column using a 6.5 min 0.1 % ammonia (25 %) in water/0.1 % ammonia (25 %) in methanol gradient and quantified by MS/MS (Waters Quattro Premier XE) in multiple-reaction monitoring mode. Full validation, including linearity, precision and trueness, matrix effect, ion suppression/enhancement of co-eluting analytes, recovery, and specificity, was performed. The method was employed successfully in the laboratory and used for routine analysis of forensic material. In combination with tetrahydrocannabinol analysis, the method covered 96 % of cases involving driving under the influence of drugs. The manual labor involved in preparing blood samples, solvents, etc., was reduced to a half an hour per batch. The automated sample preparation setup also minimized human exposure to hazardous materials, provided highly improved ergonomics, and eliminated manual pipetting.
Figure
Robotic setup for fully automated solid-phase extraction of whole blood  相似文献   

18.
19.
We report on a new enzyme-free electrochemical immunoassay for the sensitive detection of the p53 protein (p53; a model analyte) by using a screen-printed carbon electrode modified with monoclonal mouse anti-human p53 antibody tagged with gold nanoparticles. First, nanogold microspheres doped with Prussian Blue were synthesized by a reverse micelle method. The resulting microspheres were used to label polyclonal anti-p53 antibody which then was applied in a sandwich immunoassay in pH 6.5 buffer solution using the Prussian Blue in the particles as the redox-active reporter. The electrochemical signal of the immunosensor is shown to increase with the concentration of the analyte (p53 protein) in the range from 0.5 to 80 U mL?1, with a detection limit of 0.1 U mL?1. No non-specific adsorption was observed. Coefficients of variation for intra-assay and inter-assay were below 8.5 % and 11.5 %, respectively. In addition, the method was applied to the analysis of 15 human serum samples, and a good relationship was found between the new immunoassay and the referenced electro-chemiluminescence method.
Figure
?  相似文献   

20.
This study establishes a method, using different buffer conductivities and large-volume sample stacking (LVSS)–sweeping capillary electrophoresis, for analysis of carbamazepine (CBZ) and its five metabolites in serum. The capillary (50/60 cm) was filled with a high concentration of background electrolyte (150 mM phosphate, pH?3.5, containing 15 % methanol), followed by a large volume of samples (10 psi, 20 s) with low-concentration buffers (5 mM phosphate, pH?3.5, with 5 % methanol). When high voltage was applied (?20 kV), the sodium dodecyl sulfate (SDS) started to sweep the analytes to an outlet. Meanwhile, the analytes decelerated at the boundary between low- and high-conductivity buffers. Finally, a narrow sample zone was formed. The procedure of sweeping and separation was simultaneously carried out by a sweeping buffer (150 mM phosphate, pH?3.5) with 15 % methanol and 50 mM SDS added, and the detection was performed by UV at 214 nm. The method was validated for linearity (r?≧?0.997), precision, and accuracy. The calibration curves were established for CBZ and its five metabolites between 0.03–25 and 0.03–3 μg/mL. The limits of detection (S/N?=?3) were 0.01 μg/mL for each analyte. Compared with simple MEKC (0.5 psi, 5 s), this system can improve the sensitivity about 300-fold. Finally, this method was successfully applied to five patients, who had taken 200 mg CBZ daily, and CBZ levels were found to be from 3.72 to 5.82 μg/mL.
Figure
Chromatogram of resolution of analytes extracted from serum by LVSS-sweeping CE.; peaks: 1. CBZ, 2. CM-3, 3. CM-E, 4. CM-2, 5. CM-10, 6. CM-D, IS: ethyl paraben  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号