首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-intensity neutron source that is highly correlated spatially and with time and will be used for neutron scattering experiments can be obtained by dt m catalyzed fusion by enhancing the formation rate of dtμ molecules using a high-intensity pulsed laser to dtμ gas. This paper considers the use of dtμ fusion for fast ignition of inertial confinement fusion, and the possibility of ensuring energy balance in energy production. dt fusion can be quickly ignited by depositing dtμ fusion energy into a smaller space than is done in other methods, such as Z-pinch or heavy-ion fusion. Space propulsion can be obtained with a light fuel mass rather than by a fission repulsion system using the muons produced by annihilation of the anti-protons stored in liquid superfluid of condensed He. Using an extremely highly compressed target can create a source of high luminosity muons for muon–muon collider- and neutrino-oscillation experiments. This approach can eliminate the need for a super-conducting solenoidal for capturing the beam of pions and muons generated in a large target, and then these pions and muons can be manipulated by a laser beam instead of by employing RF manipulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
In this paper we discuss the statistics of the main branch species of the muon catalyzed d-t fusion. From a master equation we derive and numerically solve kinetic equations for the average density and the covariances of a system composed of muons, muonic deuterium and muonic tritium atoms, muon molecular d-t ions, muonic helium, helium and neutrons. The system consists of an initial fixed amount of muons in a 50–50% D2 + T2 mixture without any external muon source. It is known that the probability distribution function of the population species with the exception of the neutron and helium follow a multinomial distribution function.  相似文献   

3.
One of the main concerns about the current working on nuclear power reactors is the potential hazard of their radioactive waste. There is hope that this issue will be reduced in next generation nuclear fusion power reactors. Reactors will release nuclear energy through microexplosions that occur in a mixture of hydrogen isotopes of deuterium and tritium. However, there exist radiological hazards due to the accumulation of tritium in the blanket layer. A catalytic fusion reaction of DT x mixture may stand between DD and an equimolar DT approach in which the fusion process continues with a small amount of tritium seed. In this paper, we investigate the possibility of DTx reaction in the fast ignition (FI) scheme. The kinematic study of the main mechanism of the energy gain–loss term, which may disturb the ignition and burn process, was performed in FI and the optimum values of precompressed fuel and proton beam driver were derived. The recommended values of fuel parameters are: areal density ρ R ≥ 5g · cm?2 and initial tritium fraction x ≤ 0.025. For the proton beam, the corresponding optimum interval values are proton average energy 3 ≤ E p ≤ 10 MeV, pulse duration 5 ≤ t p ≤ 15 ps and power 5 ≤ W p ≤ 12 × 1022 (keV·cm3 · ps?1). It was proved that under the above conditions, a fast ignition DT x reaction stays in the catalytic regime.  相似文献   

4.
The purpose of this work is to study the interaction between an ion beam and a doped deuterium-tritium (DT) plasma in a fast ignition nuclear fusion context. In order to analyze the influence of the dopants in the interaction process, we present a physical model to carry out spatial-temporal simulations of the stopping of an ion beam interacting with a doped plasma target, the plasma heating processes, and the formation of the ignition regions. We perform a set of numerical experiments where different concentrations of dopants are added to a fully ionized DT plasma. These simulations allow us to characterize the increase in the stopping power and the maximum temperatures achieved with the presence of impurities, as well as the reduction of the heated and ignition regions. This reduction in the ignition region indicates difficulties for the formation of an efficient hot spot when there are dopants in the DT plasma.  相似文献   

5.
Low temperature sites for muons implanted in TiHx have been found to be a mixture of interstitial and substitutional sites, with substitutional occupancy determined by the probability that a muon in an interstitial site will have a vacant nearest neighbor substitutional site. As with ZrHx, activation from the interstitial site is observed below 300 K. From the depolarization rate in the substitutional site, the muon likely displaces the neighboring H atoms by about 0.1 A. Diffusion for the substitutional muons occurs above room temperature with an activation of about 0.38 eV, which is less than the 0.505 eV for hydrogen vacancy motion observed by NMR. To explain this the muon transition rate to a vacancy must be less than that of hydrogen.  相似文献   

6.
高通量μ子源是国际上μ子科学研究的重要条件。在中国散裂中子源的高能质子应用区中,运用蒙特卡罗工具Geant4和G4beamline软件设计了使用内靶超导螺线管俘获高通量表面μ子的束线。与传统的分离靶和基于四极磁铁的收集系统相比,大孔径超导螺线管可以将收集效率提高两个量级。通过对不同靶材的粒子产率进行分析得出石墨是最佳靶材,然后比较俘获螺线管与束流的不同偏转角度下收集的表面μ的产率,提出了合理的较高产率的俘获和输运螺线管的设计方案,并与常规磁铁方案比较,最终在衰变螺线管端口的表面μ通量高达108/s。  相似文献   

7.
Calculations of the number of deuterium-tritium fusions a muon might catalyze in temperature and density conditions found in moderate fuel compressions are examined. Analytic models of muon catalyzed fusion reactions including muon sticking suggest that a deuterium-tritium fuel target with injected muons achieves an energetically viable number of fusions per muon only at fuel temperatures less than about 5 eV and fuel densities greater than 100 times LHD.  相似文献   

8.
The energy spectrum of cosmic ray muons in the range of several TeV to PeV obtained through the analysis of multiple interactions of muons (the pair meter technique) in the Baksan Underground Scintillation Telescope (BUST) is presented. Results are compared with prior BUST data on the muon energy spectrum measurements and data of other experiments, along with calculations for different muon spectrum models.  相似文献   

9.
This paper presents the final results of an experimental study of the kinetics of the muon catalysed fusion (MCF) in solid hydrogen-deuterium mixtures (H/D) at a temperature of 3 K. The experiment E742 was carried out on a TRIUMF meson facility in Canada. Four exposures were performed at different deuterium concentrations in the H/D mixture: cd = 0.0005, 0.02, 0.15 and 0.75. A simultaneous analysis of the measured time distributions of the 5.5 MeV γ-quanta and the 5.3 MeV conversion muons obtained from nuclear fusion in the pdμ molecule allowed to extract the values of MCF chain parameters in the H/D mixture: the fusion partial rates for different nuclear spin states of the pdμ molecule, and the pdμ molecule formation rate. The experimental data fitting procedure was conducted in two ways: using solely the analytical formulae describing the kinetics of the MCF processes in the H/D mixture, and the detailed Monte Carlo simulation of the entire experiment. The results obtained by these two methods are consistent with each other and confirm the existence of the Wolfenstein-Gerstein effect.  相似文献   

10.
The temperature dependences of parameters of the muon spin relaxation in liquid and crystalline nitrogen have been studied. It has been established that in condensed nitrogen there takes place a fast depolarization of muons. An anomalous behaviour of the amplitude and phase of muon precession is found in the vicinity of the orientation phase transition in solid nitrogen. It has been shown that muon spin relaxation parameters in nitrogen do not change at reduction of the oxygen impurity content from 0.7·10−4 to 10−6. The fast depolarization of muons in condensed nitrogen is apparently due to the formation of muonium atoms. To explain the phenomena observed, a model of the muonium chemical reaction is proposed. The initial phase of the muon precession has been measured as a function of the perpendicular magnetic field to determine the state of short-lived muonium in nitrogen. It has been determined that muonium in nitrogen is in an excited state. Consideration of the nuclear hyperfine interaction of muonium in condensed nitrogen makes it possible to give a qualitative explanation for the temperature dependence of the initial amplitude of the muon precession.  相似文献   

11.
Taqqu  D. 《Hyperfine Interactions》1996,101(1):633-640
A novel method is proposed for the efficient conversion of intermediate energy negative muons into a low-energy muon beam. It is based on using an electric field to eject muons from a moderator consisting of a large number of thin carbon foils placed perpendicularly to the axis of a high-field solenoid. High-energy muons are made to slow down within the moderator to an energy where further slowing down is inhibited by the electric field acceleration between the foils. The muons accumulate at low energy within the moderator hopping from one foil to the next until they come out as a low-energy muon beam. The resulting phase compression factor exceeds 1000. Efficient initial injection of the muons into the moderator is obtained either by letting the muons enter it in a direction opposite to the acceleration force or by producing the muons within a magnetic trap containing the moderator. A practical configuration based on the second scheme is presented. By implementing the method into the most intense muon production configurations a new pathway is opened that may ultimately compete with other schemes in the selection of the optimal source for high-energy muon colliders.  相似文献   

12.
The large geometric factor and good spatial resolution of the Large Volume Detector (LVD) ensures statistically significant and highly accurate measurements of muon trajectories and determination of the multiplicity of muon groups. The developed algorithm allows us to reconstruct 2 × 106 muon events (single muons and muon groups). Characteristics of muon groups are obtained and the specific yield of neutrons produced by single muons, muon groups, and showers is determined.  相似文献   

13.
The powerful muon and tracker systems of the CMS detector together with dedicated reconstruction software allow precise and efficient measurement of muon tracks originating from proton-proton collisions. The standard muon reconstruction algorithms, however, are inadequate to deal with muons that do not originate from collisions. This note discusses the design, implementation, and performance results of a dedicated cosmic muon track reconstruction algorithm, which features pattern recognition optimized for muons that are not coming from the interaction point, i.e., cosmic muons and beam-halo muons. To evaluate the performance of the new algorithm, data taken during Cosmic Challenge phases I and II were studied and compared with simulated cosmic data. In addition, a variety of more general topologies of cosmic muons and beam-halo muons were studied using simulated data to demonstrate some key features of the new algorithm.  相似文献   

14.
Estimates of cosmic-ray muon and atmospheric neutrino fluxes at TeV energies are obtained taking into account a “prompt” production of muons and neutrinos through charmed-particle decays and a “direct” lepton-pair production through the Drell-Yan mechanism and resonances. It is found that the contribution of charmed particles to the muon flux is equal to that from the conventional sources (pion and kaon decays) at 60 TeV, and the same equality can take place at 10 and 1 TeV for muon and electron neutrinos, respectively (for particles coming to sea level in the vertical direction). This “direct” production contribution to muon and neutrino fluxes is estimated very arbitrarily, but it cannot be excluded that this contribution is equal to that from the conventional source at energies of 0.5 and 0.05 PeV for muons and muon neutrinos, respectively. Currently, the estimates of the “prompt” and the “direct” contributions to cosmic-ray muons and atmospheric neutrinos are only qualitative. This is true especially for the “direct” contribution. Nevertheless, it seems reasonable to attract attention to these potentially important sources of atmospheric muons and neutrinos.  相似文献   

15.
The Sydney University Giant Air-shower Recorder(SUGAR) measured the energy spectrum of ultra-high-energy cosmic rays reconstructed from muon detector reading. Comparison of their spectra SUGAR and Pierre Auger Observatory allows us to reconstruct the empirical dependence of the number of muons in a vertical shower on the primary energy for energies between 1017 and 1018 eV. We compared this dependence with the predictions of hadronic interaction models QGSJET-II-04, EPOS-LHC and SIBYLL-2.3c. In addition, we analyzed the response of the array of muon detectors in order to determine the slope of the muon lateral distribution function. It is important to understand how much the number of muons differs from the predictions of modeling at different distances from the shower axis.  相似文献   

16.
We have calculated the number of high-energy muons in gamma showers generated by photoproduction and by muon pair creation. The prompt muons have flatter energy spectrum than the muons, which come from photoproduction and contribute significant fraction of the total muon rates for Eμ ? 1 TeV. The total rate of high-energy muons in gamma showers is, however, very low.  相似文献   

17.
18.
Reviewed are the present status of the fast ignition researches. Since 1997, the fast ignition experiment and theory researches have been extensively continued at the Institute of Laser Engineering of Osaka University. In particular, the cone-shell target experiments and simulation research have been progressing. In order to demonstrate heating of imploded high density plasma to the ignition temperature, in the April of 2003, the construction of heating laser of 10 kJ/10 ps/1.06 μm (Laser for Fusion Experiment; LFEX), for FIREX-I (Fast Ignition Realization Experiment) has started. The fabrication of DT foam cryogenic cone target is also under development as a collaboration program between Osaka University and NIFS (National Institute for Fusion Science). The LFEX will be completed in 2008. After the completion of LFEX, the foam cryogenic cone shell target experiment will start in 2008. As a new approach toward a compact ignition, an impact fusion has been proposed, where the ablative acceleration to the order of 108 cm/s is the key issue. The ablation acceleration related to the impact fusion has been explored by experiments.  相似文献   

19.
The results of the study of the near-horizontal muon flux in the zenith angle range of 85–95 degrees are presented. In particular, the so-called albedo muons (atmospheric muons backscattered in the ground to the upper hemisphere are recorded in this range. The data of measurement series performed at the NEVOD-DECOR experimental complex are analyzed for 30 thousand of “live” time hours. Multiple Coulomb scattering of muons in the ground is simulated by theMonte-Carlo method using various models. The measured muon flux intensity is compared with the simulation results.  相似文献   

20.
Local hot regions caused by energy deposition from stopped muons can significantly influence the cycle rate of muon catalyzed fusion. The observed nonlinear density dependence of molecular formation rates is explained as a result of the temperature dependence since muonic deuterium-tritium molecules are formed at a high effective temperature that increases roughly linearly with density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号