首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we focus on the need to solve chaotic solutions of high-dimensional nonlinear dynamic systems of which the analytic solution is difficult to obtain. For this purpose, a Differential Control Method (DCM) is proposed based on the Mechanized Mathematics-Wu Elimination Method (WEM). By sampling, the computer time of the differential operator of the nonlinear differential equation can be substituted by the differential quotient of solving the variable time of the sample. The main emphasis of DCM is placed on substituting the differential quotient of a small neighborhood of the sample time of the computer system for the differential operator of the equations studied. The approximate analytical chaotic solutions of the nonlinear differential equations governing the high-dimensional dynamic system can be obtained by the method proposed. In order to increase the computational efficiency of the method proposed, a thermodynamics modeling method is used to decouple the variable and reduce the dimension of the system studied. The validity of the method proposed for obtaining approximate analytical chaotic solutions of the nonlinear differential equations is illustrated by the example of a turbo-generator system. This work is applied to solving a type of nonlinear system of which the dynamic behaviors can be described by nonlinear differential equations.  相似文献   

2.
Three-to-One Internal Resonances in Hinged-Clamped Beams   总被引:7,自引:0,他引:7  
Chin  Char-Ming  Nayfeh  Ali H. 《Nonlinear dynamics》1997,12(2):129-154
The nonlinear planar response of a hinged-clamped beam to a primary excitation of either its first mode or its second mode is investigated. The analysis accounts for mid-plane stretching, a static axial load and a restraining spring at one end, and modal damping. For a range of axial loads, the second natural frequency is approximately three times the first natural frequency and hence the first and second modes may interact due to a three-to-one internal resonance. The method of multiple scales is used to attack directly the governing nonlinear partial-differential equation and derive two sets of four first-order nonlinear ordinary-differential equations describing the modulation of the amplitudes and phases of the first two modes in the case of primary resonance of either the first or the second mode. Periodic motions and periodically and chaotically modulated motions of the beam are determined by investigating the equilibrium and dynamic solutions of the modulation equations. For the case of primary resonance of the first mode, only two-mode solutions are possible, whereas for the case of primary resonance of the second mode, single- and two-mode solutions are possible. The two-mode equilibrium solutions of the modulation equations may undergo a supercritical or a subcritical Hopf bifurcation, depending on the magnitude of the axial load. A shooting technique is used to calculate limit cycles of the modulation equations and Floquet theory is used to ascertain their stability. The limit cycles correspond to periodically modulated motions of the beam. The limit cycles are found to undergo cyclic-fold bifurcations and period-doubling bifurcations, leading to chaos. The chaotic attractors may undergo boundary crises, resulting in the destruction of the chaotic attractors and their basins of attraction.  相似文献   

3.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

4.
Global bifurcations and multi-pulse chaotic motions of flexible multi-beam structures derived from an L-shaped beam resting on a vibrating base are investigated considering one to two internal resonance and principal resonance. Base on the exact modal functions and the orthogonality conditions of global modes, the PDEs of the structure including both nonlinear coupling and nonlinear inertia are discretized into a set of coupled autoparametric ODEs by using Galerkin’s technique. The method of multiple scales is applied to yield a set of autonomous equations of the first order approximations to the response of the dynamical system. A generalized Melnikov method is used to study global dynamics for the “resonance case”. The present analysis indicates multi-pulse chaotic motions result from the existence of Šilnikov’s type of homoclinic orbits and the critical parameter surface under which the system may exhibit chaos in the sense of Smale horseshoes are obtained. The global results are finally interpreted in terms of the physical motion of such flexible multi-beam structure and the dynamical mechanism on chaotic pattern conversion between the localized mode and the coupled mode are revealed.  相似文献   

5.
主要研究侧向风载荷作用下小垂度覆冰悬索的非线性非平面运动的复杂动力学.根据分析力学、弹性力学和空气动力学理论,建立覆冰悬索3个自由度非线性振动的偏微分运动方程,并对其进行无量纲化,运用Galerkin方法对偏微分运动方程进行离散得到3个自由度的常微分方程,再利用多尺度法得到面内主共振2:1内共振的平均方程.利用数值方法研究悬索的非线性运动,结果表明系统呈现周期、多倍周期、概周期和混沌运动的规律.  相似文献   

6.
非线性大挠度矩形板中内共振导致的分叉   总被引:21,自引:0,他引:21  
研究了一个非线性大挠度矩形板在简谐激励作用下的动力学行为,利用Galerkin原理和平均法建立了这一非线性系统的双模态模型,讨论了由于内共振导致的分叉行为,最后利用数值分析证实了理论分析得到的结论。  相似文献   

7.
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells  相似文献   

8.
The double mode model of the chaotic motion for a large deflection plate   总被引:2,自引:0,他引:2  
IntroductionThelastdecadehaswitnesedtheincreasingadvancesinthestudyofchaoticvibrationofmechanicalsystems.However,greatatentio...  相似文献   

9.
The dynamic behavior of a nonlinear viscoelastic panel subjected to a simple harmonic excitation is studied. Using the Galerkin principle, the double mode model is presented in this paper. The bifurcation behavior of the panel is examined in detail in the case of internal response. The method of averaging is used to derive a set of autonomous equations. The averaged differential equations are then examined to determine their bifurcation behavior. Finally, the results of theoretical analysis are numericaly verified.  相似文献   

10.
By using the method of quasi-shells,the nonlinear dynamic equations of three-dimensional single-layer shallow cylindrical reticulated shells with equilateral tri- angle cell are founded.By using the method of the separating variable function,the transverse displacement of the shallow cylindrical reticulated shells is given under the conditions of two edges simple support.The tensile force is solved out from the compati- ble equations,a nonlinear dynamic differential equation containing second and third order is derived by using the method of Galerkin.The stability near the equilibrium point is discussed by solving the Floquet exponent and the critical condition is obtained by using Melnikov function.The existence of the chaotic motion of the single-layer shallow cylin- drical reticulated shell is approved by using the digital simulation method and Poincarémapping.  相似文献   

11.
The nonlinear dynamical equations of axle symmetry are established by the method of quasi-shells for three-dimensional shallow conical single-layer lattice shells. The compatible equations are given in geometrical nonlinear range. A nonlinear differential equation containing the second and the third order nonlinear items is derived under the boundary conditions of fixed and clamped edges by the method of Galerkin. The problem of bifurcation is discussed by solving the Floquet exponent. In order to study chaotic motion, the equations of free oscillation of a kind of nonlinear dynamics system are solved. Then an exact solution to nonlinear free oscillation of the shallow conical single-layer lattice shell is found as well. The critical conditions of chaotic motion are obtained by solving Melnikov functions, some phase planes are drawn by using digital simulation proving the existence of chaotic motion.  相似文献   

12.
复合材料层合板1:1参数共振的分岔研究   总被引:3,自引:0,他引:3  
叶敏  吕敬  丁千  张伟 《力学学报》2004,36(1):64-71
针对复合材料对称铺设各向异性矩形层合板的物理模型,在同时考虑了材料、阻尼和几何等非线性因素后,建立了二自由度非线性参数振动系统动力学控制方程,并应用多尺度法求得基本参数共振下的近似解析解,利用数值模拟分析了系统的分岔和混沌运动.指出了伽辽金截断对系统动力学分析的影响,以及系统进入混沌的途径.  相似文献   

13.
In this paper, research on nonlinear dynamic behavior of a string-beam coupled system subjected to parametric and external excitations is presented. The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system. The Galerkin's method is employed to simplify the governing equations to a set of ordinary differential equations with two degrees-of-freedom. The case of 1:2 internal resonance between the modes of the beam and string, principal parametric resonance for the beam, and primary resonance for the string is considered. The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system. Based on the averaged equation obtained here, the techniques of phase portrait, waveform, and Poincare map are applied to analyze the periodic and chaotic motions. It is found from numerical simulations that there are obvious jumping phenomena in the resonant response–frequency curves. It is indicated from the phase portrait and Poincare map that period-4, period-2, and periodic solutions and chaotic motions occur in the transverse nonlinear vibrations of the string-beam coupled system under certain conditions. An erratum to this article is available at .  相似文献   

14.
The bifurcation and chaos of a clamped circular functionally graded plate is investigated. Considered the geometrically nonlinear relations and the temperature-dependent properties of the materials, the nonlinear partial differential equations of FGM plate subjected to transverse harmonic excitation and thermal load are derived. The Duffing nonlinear forced vibration equation is deduced by using Galerkin method and a multiscale method is used to obtain the bifurcation equation. According to singularity theory, the universal unfolding problem of the bifurcation equation is studied and the bifurcation diagrams are plotted under some conditions for unfolding parameters. Numerical simulation of the dynamic bifurcations of the FGM plate is carried out. The influence of the period doubling bifurcation and chaotic motion with the change of an external excitation are discussed.  相似文献   

15.
W. Zhang  W. L. Hao 《Nonlinear dynamics》2013,73(1-2):1005-1033
Global bifurcations and multi-pulse chaotic dynamics are studied for a four-edge simply supported composite laminated piezoelectric rectangular plate under combined in-plane, transverse, and dynamic electrical excitations. Based on the von Karman type equations for the geometric nonlinearity and Reddy’s third-order shear deformation theory, the governing equations of motion for a composite laminated piezoelectric rectangular plate are derived. The Galerkin method is employed to discretize the partial differential equations of motion to a three-degree-of-freedom nonlinear system. The six-dimensional non-autonomous nonlinear system is simplified to a three-order standard form by using the method of normal form. The extended Melnikov method is improved to investigate the six-dimensional non-autonomous nonlinear dynamical system in mixed coordinate. The global bifurcations and multi-pulse chaotic dynamics of the composite laminated piezoelectric rectangular plate are studied by using the improved extended Melnikov method. The multi-pulse chaotic motions of the system are found by using numerical simulation, which further verifies the result of theoretical analysis.  相似文献   

16.
The three-dimensional frame is simplified into flat plate by the method of quasiplate. The nonlinear relationships between the surface strain and the midst plane displacement are established. According to the thin plate nonlinear dynamical theory, the nonlinear dynamical equations of three-dimensional frame in the orthogonal coordinates system are obtained. Then the equations are translated into the axial symmetry nonlinear dynamical equations in the polar coordinates system. Some dimensionless quantities different from the plate of uniform thickness are introduced under the boundary conditions of fixed edges, then these fundamental equations are simplified with these dimensionless quantities. A cubic nonlinear vibration equation is obtained with the method of Galerkin. The stability and bifurcation of the circular three-dimensional frame are studied under the condition of without outer motivation. The contingent chaotic vibration of the three-dimensional frame is studied with the method of Melnikov. Some phase figures of contingent chaotic vibration are plotted with digital artificial method.  相似文献   

17.
Minghui Yao  Wei Zhang 《Meccanica》2014,49(2):365-392
This paper investigates the multi-pulse global bifurcations and chaotic dynamics of the high-dimension nonlinear system for a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. Using the von Karman type equations, Reddy’s third-order shear deformation plate theory and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. Applying the method of multiple scales and Galerkin’s approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1:2 internal resonance and primary parametric resonance. From the averaged equations obtained, the theory of normal form is used to derive the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on the explicit expressions of normal form, the extended Melnikov method is used for the first time to investigate the Shilnikov type multi-pulse homoclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multi-pulse chaotic dynamics of the laminated composite piezoelectric rectangular plate are analytically obtained. Numerical simulations also illustrate that the Shilnikov type multi-pulse chaotic motions can also occur in the laminated composite piezoelectric rectangular plate. Overall, both theoretical and numerical studies demonstrate that the chaos in the Smale horseshoe sense exists for the laminated composite piezoelectric rectangular plate.  相似文献   

18.
Three nonlinear integro-differential equations of motion derived in Part I are used to investigate the forced nonlinear vibration of a symmetrically laminated graphite-epoxy composite beam. The analysis focuses on the case of primary resonance of the first in-plane flexural (chordwise) mode when its frequency is approximately twice the frequency of the first out-of-plane flexural-torsional (flapwise-torsional) mode. A combination of the fundamental-matrix method and the method of multiple scales is used to derive four first-order ordinary-differential equations describing the modulation of the amplitudes and phases of the interacting modes with damping, nonlinearity, and resonances. The eigenvalues of the Jacobian matrix of the modulation equations are used to determine the stability of their constant solutions, and Floquet theory is used to determine the stability and bifurcations of their limit-cycle solutions. Hopf bifurcations, symmetry-breaking bifurcations, period-multiplying sequences, and chaotic motions of the modulation equations are studied. The results show that the motion can be nonplanar although the input force is planar. Nonplanar responses may be periodic, periodically modulated, or chaotically modulated motions.  相似文献   

19.
A set of nonlinear differential equations is established by using Kane‘s method for the planar oscillation of flexible beams undergoing a large linear motion. In the case of a simply supported slender beam under certain average acceleration of base, the second natural frequency of the beam may approximate the tripled first one so that the condition of 3 : 1 internal resonance of the beam holds true. The method of multiple scales is used to solve directly the nonlinear differential equations and to derive a set of nonlinear modulation equations for the principal parametric resonance of the first mode combined with 3 : 1 internal resonance between the first two modes. Then, the modulation equations are numerically solved to obtain the steady-state response and the stability condition of the beam. The abundant nonlinear dynamic behaviors, such as various types of local bifurcations and chaos that do not appear for linear models, can be observed in the case studies. For a Hopf bifurcation,the 4-dimensional modulation equations are reduced onto the central manifold and the type of Hopf bifurcation is determined. As usual, a limit cycle may undergo a series of period-doubling bifurcations and become a chaotic oscillation at last.  相似文献   

20.
扁球面网壳的混沌运动研究   总被引:3,自引:0,他引:3  
在圆形三向网架非线性动力学基本方程的基础上,用拟壳法给出了圆底扁球面三向网壳的非线性动力学基本方程.在固定边界条件下,引入了异于等厚度壳的无量纲量,对基本方程和边界条件进行无量纲化,通过Galerkin作用得到了一个含二次、三次的非线性动力学方程.为求Melnikov函数,对一类非线性动力系统的自由振动方程进行了求解,得到了此类问题的准确解.在无激励情况下,讨论了稳定性问题.在外激励情况下,通过求Melnikov函数,给出了可能发生混沌运动的条件.通过数字仿真绘出了平面相图,证实了混沌运动的存在.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号