首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the pharmacokinetics (PK) of Lutetium Texaphyrin (Lu-Tex), a second-generation photosensitizer, in the Syrian hamster cheek pouch early cancer model. Ten male hamsters, five with chemically induced early squamous cell cancer of the left cheek pouch, received an intracardiac injection of a 10 mg/ml Lu-Tex solution, resulting in a dose of 12 mg Lu-Tex per kg of bodyweight. The PK of the dye have been measured during the 24 h following the injection with an optical-fiber-based spectrofluorometer on the ventral skin, the healthy and the tumoral cheek-pouch mucosa. The Lu-Tex fluorescence is excited at 460 nm and detected around 740 nm. All the measurements yield very similar pharmacokinetic curves. The fluorescence intensity reaches a maximum between two and three hours after the injection and, at its maximum, it is consistently higher (up to 1.5 times) on the tumor than on the healthy mucosa. It remains smaller on the skin than on cheek-pouch mucosa. After 24 h, the Lu-Tex fluorescence is no longer detectable either on the skin, on the lesion or on the healthy mucosa. Moreover, Lu-Tex clearly displays a significant fluorescence selectivity between early carcinoma and healthy mucosa in this model. Furthermore, the inter-animal fluctuations of the fluorescence signal are small (+/-16% on the tumor-bearing mucosa). Eight-minute-long skin-irradiation tests have been performed 24 h after the injection of the Lu-Tex on the ventral skin of 16 additional animals with a solar simulator. No reaction is observed, either macroscopically or microscopically, which further demonstrates, as suggested by the fluorescence measurements, that this photosensitizer is significantly cleared from the skin after 24 h.  相似文献   

2.
We have investigated the tumour-localising properties and in vivo fluorescence kinetics of a hexamethoxylated carotenqporphyrin (CP6) in two primary tumour models: UV-B-induced early skin cancer in hairless mice and chemically induced mucosal dysplasia in the rat palate. CP6 fluorescence kinetics are investigated by measuring in vivo fluorescence spectra and images of the mouse skin and the rat palate at different time points after injection. For the tumour-localising properties, microscopic phase-contrast and fluorescence images are recorded. The in vivo fluorescence kinetics in the mouse skin show localization of CP6 in the tumours. However, fluorescence microscopy images show that CP6 localises in the dermis and structures that are not related to the malignant transformation of the mouse skin. The fluorescence kinetics in the rat palate show a significant correlation between the degree of malignancy and the CP6 fluorescence build-up time in the palate. The microscopic images show that CP6 fluorescence localises in the connective tissue and not in the dysplastic epithelium. In conclusion, CP6 does not localise preferentially in (pre-) cancerous tissue in the two primary tumour models studied here, in contrast to reports about localisation of carotenoporphyrins in transplanted tumours. However, the CP6 build-up time in rat palates correlates with the degree of malignancy and this might possibly be a useful parameter in tumour detection.  相似文献   

3.
Photodynamic therapy (PDT) with topical aminolevulinic acid (ALA) has been shown in previous studies to improve psoriasis. However, topical ALA-PDT may not be practical for the treatment of extensive disease. In order to overcome this limitation we have explored the potential use of oral ALA administration in psoriatic patients. Twelve patients with plaque psoriasis received a single oral ALA dose of 10, 20 or 30 mg/kg followed by measurement of protoporphyrin IX (PpIX) fluorescence in the skin and circulating blood cells. Skin PpIX levels were determined over time after ALA administration by the quantification of the 635 nm PpIX emission peak with in vivo fluorescence spectroscopy under 442 nm laser excitation. Administration of ALA at 20 and 30 mg/kg induced preferential accumulation of PpIX in psoriatic as opposed to adjacent normal skin. Peak fluorescence intensity in psoriatic and normal skin occurred between 3 and 5 h after the administration of 20 and 30 mg/kg, respectively. Ratios of up to 10 for PpIX fluorescence between psoriatic versus normal skin were obtained at the 30 mg/kg dose of ALA. Visible PpIX fluorescence was also observed on normal facial skin, and nonspecific skin photosensitivity occurred only in patients who received the 20 or 30 mg/kg doses. PpIX fluorescence intensity was measured in circulating blood cells by flow cytometry. PpIX fluorescence was higher in monocytes and neutrophils as compared to CD4+ and CD8+ T lymphocytes. PpIX levels in these cells were higher in patients who received higher ALA doses and peaked between 4 and 8 h after administration of ALA. There was only a modest increase in PpIX levels in circulating CD4+ and CD8+ T lymphocytes. In conclusion oral administration of ALA induced preferential accumulation of PpIX in psoriatic plaques as compared to adjacent normal skin suggesting that PDT with oral ALA should be further explored for the treatment of psoriasis.  相似文献   

4.
Limited depth of penetration significantly limits photodynamic therapy of nodular basal cell carcinoma (BCC) using topical δ(5)-aminolevulinic acid (ALA). To demonstrate safety and efficacy of orally administered ALA in inducing endogenous protoporphyrin IX (PpIX) production in BCC, 13 patients with BCC ingested ALA in a dose-escalation protocol. All dose ranges (10, 20 or 40 mg/kg single doses) resulted in formation of PpIX in human skin and BCC, measurable by in vivo fluorescence spectrophotometry. The PpIX fluorescence peaked in tumors before normal adjacent skin from 1 to 3 h after ALA ingestion. Gross fluorescence imaging of ex vivo specimens revealed greater PpIX fluorescence in tumor than normal skin only at the 40 mg/kg dose. Fluorescence microscopy confirmed this finding by showing distinct, full-thickness PpIX fluorescence in all subtypes of BCC only after ALA given at 40 mg/kg. Side effects were dose dependent and self limited. Photosensitivity lasting less than 24 h and nausea coinciding with peak skin PpIX fluorescence occurred at 20 and 40 mg/kg doses. After 40 mg/kg ALA, serum hepatic enzyme levels rose to a maximum within 24 h, then resolved over 1–3 weeks. Transient bilirubinuria occurred in two patients.  相似文献   

5.
Abstract— The purpose of the present study was to determine the kinetics and the fluence rate dependency of the photo-bleaching of protoporphyrin IX (PpIX) in normal skin of Balb/c nude mice after systemic and topical application of 5-aminolevulinic acid (ALA). ALA was administered systemically (200 mg/kg body weight, i.p.) and topically (20% w/w ALA cream) to the mice. Fluences of up to 40 J/cm2 were delivered by a dye laser (636 nm) at fluence rates of 37.5, 75, 150, 300 and 500 mW/cm2. The photo-bleaching rate was constant within this range of fluence rates. This result suggests that there is no oxygen effect for PpIX photobleaching in this region for the skin of Balb/c nude mice. During light exposure the fluorescence decay followed neither first- nor second-order kinetics. The decay rate was slightly faster after systemic application than after topical application of ALA, but did not depend on the time (1–8 h) between application and analysis.  相似文献   

6.
In order to improve the efficacy of 5-aminolevulinic acid-based (ALA) photodynamic therapy (PDT), different ALA derivatives are presently being investigated. ALA esters are more lipophilic and therefore may have better skin penetration properties than ALA, possibly resulting in enhanced protoporphyrin IX (PpIX) production. In previous studies it was shown that ALA pentyl ester (ALAPE) does considerably enhance the PpIX production in cells in vitro compared with ALA. We investigated the in vivo PpIX fluorescence kinetics after application of ALA and ALAPE to hairless mice with and without UVB-induced early skin cancer. ALA and ALAPE (20% wt/wt) were applied topically to the mouse skin and after 30 min, the solvent was wiped off and PpIX fluorescence was followed in time with in vivo fluorescence spectroscopy and imaging. At 6 and 12 h after the 30 min application, skin samples of visible lesions and adjacent altered skin (UVB-exposed mouse skin) and normal mouse skin were collected for fluorescence microscopy. From each sample, frozen sections were made and phase contrast images and fluorescence images were recorded. The in vivo fluorescence kinetics showed that ALAPE induced more PpIX in visible lesions and altered skin of the UVB-exposed mouse skin, but not in the normal mouse skin. In the microscopic fluorescence images, higher ALAPE-induced PpIX levels were measured in the stratum corneum, but not in the dysplastic layer of the epidermis. In deeper layers of the skin, PpIX levels were the same after ALA and ALAPE application. In conclusion, ALAPE does induce higher PpIX fluorescence levels in vivo in our early skin cancer model, but these higher PpIX levels are not located in the dysplastic layer of the epidermis.  相似文献   

7.
A system for time-gated fluorescence imaging was used to perform measurements on tumor-bearing mice treated with hematoporphyrin derivative (HpD). The aim of the study was to define the potential of this technique in the diagnosis of tumors by taking advantage of the long fluorescence lifetime of the exogenous dye with respect to the decay times of the natural fluorescence. After the administration of three different drug doses (5, 10 and 25 mg/kg body weight), fluorescence images were acquired at various uptake times (from 2 h to 10 d), to determine the best instrumental conditions and experimental procedure for the detection of tumors in the murine model considered. The optimal fluorescence contrast between the tumor area and the surrounding healthy tissue was found at 12 h after the administration of either 5 or 10 mg/kg HpD and was anticipated at 8 h for the highest drug dose. In this optimum condition, the tumor region could be identified even after the injection of 5 mg/kg HpD. A better fluorescence contrast was always obtained in 15 ns-delayed images with respect to synchronous ones.  相似文献   

8.
Laser-induced fluorescence of pheophorbide a (Ph- a ) was used for in vitro photodynamic imaging (PDI) of a rat pancreatic acinar tumor. A 400 nm excitation induced a 470 nm autofluorescence and a 678 nm dye fluorescence in tumors and their surrounding pancreas 24 h after a 9 mg kg−1 body weight Ph- a intravenous administration. With lower intensities in these blood-rich tumors than in pancreas, Ph- a fluorescence signals are unable to provide tumor images. A dimensionless function (the ratio of Ph- a fluorescence by autofluorescence, called Rt for the tumor and Rp for the pancreas) was used for fluorescence contrast calculation (C = Rt/Rp) between six tumors and their paired pancreas. Among five available laser excitation wavelengths, only the 355 nm excitation gave a distinctive contrast (C = 1.5). The PDI of six intrapancreatic tumors and their intraperitoneal metastasis and of two control normal pancreas was thus performed ex vivo using a 355 nm excitation source delivered by a tripled Nd: YAG laser and a charged-coupled device camera. Fluorescence images were recorded at 680 nm (dye), 640 nm (background) and 470 nm (autofluorescence) through three corresponding 10 nm width bandpass filters. Computed division for each pixel of Ph- a fluorescence values by autofluorescence generated false color image. In this way, contrasted tumor images were obtained. But in five out of six animals false-positive images were present due to an autofluorescence decrease in some normal pancreatic areas. A 470 nm autofluorescence imaging on the same tumors gave in all cases false-positive image and false-negative in half of the cases. These observations suggest that autofluorescence alone is unable to achieve accurate PDI of pancreatic carcinoma and that using Ph- a as a PDI dye needs strong improvements.  相似文献   

9.
Photodynamic therapy (PDT) is a treatment option particularly well-suited for superficial (pre)malignant skin lesions due to the skin's accessibility to light. In the present study, the efficacy of topical hypericin-PDT was evaluated using a mouse model for actinic keratosis. For comparison, similar experiments were conducted with methyl-aminolevulinic acid (Me-ALA). Small skin tumours (1-2 mm) were induced in hairless mice by chronic UV irradiation. After topical application of hypericin (0.1% in gelcream for 24 h) or Me-ALA (Metvix? for 4 h), the lesional/non-lesional skin surface fluorescence ratio was determined and fluorescence microscopy was used to study the skin penetration of the photosensitizers. The antitumour activity of topical PDT (20 mW cm(-2), 40 J cm(-2)) was evaluated by measurement of the lesional diameters. Moreover, biopsies were taken at various time points after PDT for histological evaluation of the therapy. Our results demonstrate that after topical application of hypericin and Me-ALA, tumour selectivity is limited in mouse skin. The microscopic distribution of hypericin fluorescence showed an accumulation in the stratum corneum and low fluorescence levels in the rest of the lesions, whereas the distribution of PpIX in the skin was more homogenous. Topical hypericin-PDT was found to be less efficient (44% total lesional clearance) as compared to Me-ALA-PDT (80% total lesional clearance). Full lesional necrosis was observed in responsive lesions, and the atypical cells of actinic keratosis were replaced by normal keratinocytes 3 weeks later, both after hypericin-PDT and Me-ALA-PDT.  相似文献   

10.
A simple, rapid and sensitive fluorescence high performance liquid chromatographic method was developed to determine propranolol concentration in the small volume of rat plasma without the solvent extraction step using pronethanol as the internal standard. The analysis was accomplished using a 5 microm CAPCELL PAK analytical cyano column at room temperature and a mobile phase consisted of 1% aqueous acetic acid containing 0.2% triethylamine and acetonitrile (65:35, v/v; pH 3.8). The flow-rate was kept at 0.5 mL/min and column effluent was monitored with a fluorescence detector at an excitation wavelength of 230 nm and an emission wavelength of 340 nm. Retention times for pronethalol and propranolol were 8.5 min and 10.5 min, respectively. Linear regressions for the standard curves were linear in the range 2-800 ng/mL, giving correlation coefficients above 0.998. The detection limit was 1.34 ng/mL. No analytical interference was observed from endogenous components in rat plasma. This simple and sensitive assay method was feasibly applied to the pharmacokinetic study of propranolol after intravenous administration of 2 mg/kg of propranolol to normal and carbon tetrachloride-induced liver cirrhotic rats.  相似文献   

11.
The effect of systemic administration on drug uptake at cellular level was evaluated using time-gated fluorescence spectroscopy performed on a murine ascitic tumour model. Mice bearing L1210 leukaemia were injected intraperitoneally or intravenously with 25 mg per kg body weight hematoporphyrin derivative (HpD), 12.5 mg per kg body weight photofrin II (PII), 25 or 5 mg per kg body weight disulphonated aluminium phthalocyanine (AlS2Pc). Every 2 h and for up to 22 or 30 h, mice were sacrificed, leukaemic cells extracted from the peritoneum, washed, and resuspended in buffer for fluorescence measurements. HpD and PII emission spectra were almost identical 12 h after intraperitoneal injection with main peaks at 630 nm and no appreciable changes afterwards. In the first 12 h, the PII fluorescence spectrum was constant, while in the case of HpD a shoulder at 615 nm was detectable. Similar fluorescence behaviour was observed after intravenous administration of porphyrin derivatives. These results seem to confirm that the tumour localizing fraction is the part actually retained by the cells. The AlS2Pc spectrum peaked at 685 nm and did not change in any of our experiments. AlS2Pc is incorporated more rapidly with respect to porphyrins, as was clearly observed in the case of intravenous administration, where the AlS2Pc fluorescence was readily detectable after 2 h, whereas the PII emission became apparent only after 4-6 h.  相似文献   

12.
Laser-induced fluorescence (LIF) investigations have been performed in connection with photodynamic therapy (PDT) of basal cell carcinomas and adjacent normal skin following topical application of 5-aminolaevulinic acid (ALA) in order to study the kinetics of the protoporphyrin IX (PpIX) build-up. Five superficial and 10 nodular lesions in 15 patients are included in the study. Fluorescence measurements are performed prior to the application of ALA, 2, 4 and 6 h post ALA application, immediately post PDT (60 J cm-2 at 635 nm), and 2 h after the treatment. Hence, the build-up, photobleaching and re-accumulation of PpIX can be followed. Superficial lesions show a maximum PpIX fluorescence 6 h post ALA application, whereas the intensity is already the highest 2-4 h after the application in nodular lesions. Immediately post PDT, the fluorescence contribution at 670 nm from the photoproducts is about 2% of the pre-PDT PpIX fluorescence at 635 nm. Two hours after the treatment, a uniform distribution of PpIX is found in the lesion and surrounding normal tissue. During the whole procedure, the autofluorescence of the lesions and the normal skin does not vary significantly from the values recorded before the application of ALA.  相似文献   

13.
Abstract— The purpose of this study was to investigate the in vitro and in vivo spectral characteristics of the fluorescent pH-sensitive probe Ws-carboxyethylcarboxyfluorescein (BCECF) in different tissues and its fluorescence kinetics profiles. The in vivo study was performed on anesthetized adult Wistar rats. After intravenous administration (4.8 mg/kg), fluorescence spectra were recorded on the following tissues: skin, an isolated blood vessel and liver. Measurements performed in vitro on blood samples show modifications of the BCECF emission spectrum with a blue-shift (10 nm) and a low fluorescence emission. Blood content greatly influences the pH measurement by increasing the I(490 exc, 530 em.)/I(470 exc, 530 em.) fluorescence ratio value (ratio of the fluorescence intensities at 530 nm following excitation at 470 nm and 490 nm) when the hematocrit is high. A 0.35 ratio difference is observed between a BCECF-buffered solution and blood samples of 44% hematocrit. The emission spectra recorded on the skin are quite similar to the emission spectrum of BCECF in aqueous solution and are consistent with an extravascular localization of the dye a few minutes after injection. On the contrary, spectra recorded on the blood vessel and the liver are more similar than those recorded in vitro on high hematocrit solutions. Kinetic profiles in skin, liver and isolated blood vessels compared to the clearance obtained by blood sampling provide information about tissue perfusion. Then the variation of in vivo spectra in different tissues may be taken into account to measure tissue pH with special regard to the blood content of the illuminated area and the time range in which the measurement is performed.  相似文献   

14.
Laser-induced fluorescence (LIF) of pheophorbide-a (Ph-a) was used for imaging of a rat pancreatic tumor. Using a dimensionless function (the ratio of Ph-a fluorescence by bluish autofluorescence), the fluorescence contrasts between excised tumors and their paired pancreas were investigated up to 48 h after a 9 mg kg-1 Ph-a intravenous administration. Among five tested excitation wavelengths, 355 and 610 nm excitations gave the best distinctive contrasts, both 48 h after dye injection. The LIF imaging of six intrapancreatic tumors and six healthy pancreas was carried out in vivo using two laser excitations: 355 nm (Nd:YAG + tripling) for bluish autofluorescence and 610 nm (rhodamine 6G dye) for reddish autofluorescence and dye emission. Images were recorded through bandpass filters at 470 and 640 nm (autofluorescence) and at 680 nm (dye + autofluorescence) with an intensified charged-coupled device camera. Autofluorescence as Ph-a fluorescence images did not allow accurate LIF diagnosis of pancreatic carcinoma. An image processing, including for each pixel a computed division of Ph-a fluorescence (after subtraction of reddish autofluorescence) by bluish autofluorescence intensity generated poorly contrasted tumor images in five of six and false tumor localization in one of three of the tumor-bearing pancreas. A fitting of the digital 640 nm autofluorescence up to the mean 680 nm fluorescence intensity in pancreas prior to subtraction allowed a safe diagnosis to be made with well-contrasted tumor images. To assess automation ability of the processing, a same fitting coefficient (mean of individual values) was applied. In this way, false-negative (one of six) and false-positive (two of six) images were present in tumor-bearing animals as false-positive in one-half of the controls. A successful standardized procedure was then applied with a normalization of 640 and 680 nm pancreas intensities to a same set threshold prior processing. In opposition to thin-layered hollow organs, such as bronchial tube or digestive tract, LIF imaging of carcinoma inserted in a compact organ is exhausting. The use of a dye excitable in the red wavelength range (610 nm for Ph-a) may partly solve this problem, rendering LIF imaging more accurate and potentially automated.  相似文献   

15.
Abstract Bis (di-isobutyl octadecylsiloxy)silicon 2,3-naphthalocyanine ( iso BOSINC) is a representative of a group of naphthalocyanine derivatives with spectral and photophysical properties that make them attractive candidates for photodynamic therapy (PDT). Tissue distributions were studied in normal and in tumor-bearing rats as a function of time following intravenous injection of iso BOSINC as a suspension in 10% Tween 80 in saline. The dose studied was 0.25 mg/kg of body weight. The compound iso BOSINC was isolated from several tissues and organs, as well as tumors and peritumoral muscles and skin, and quantitated by a high-performance liquid chromatographic technique. The tumor model, an N -(4-[5-nitro-2-furyl)-2-thiazolyl)formamide (FANFT)-induced urothelial cell carcinoma, was transplanted into the hind legs of Fischer 344 rats. The dye was retained in tumors at higher concentrations than in all tissues and organs examined, except for spleen and liver. The highest concentration ratio of dye in tumor versus peritumoral muscle (24.5) occurred 9 h after injection. Serum clearance of iso BOSINC showed similar kinetic behavior for both groups of rats, with a t1/2 of elimination of ∼ 10 h. At 7 and 14 days postinjection, the levels of dye found in testes were generally higher than in most other tissues, except spleen and liver. Concentrations of iso BOSINC were either very low or not detectable in rat brain. Trace amounts of the dye were excreted in the urine, and by day 14 approximately 17% of the dose was accounted for in the feces. The significant levels of the drug in tumors, as well as the excellent ratios of tumor-to-muscle concentration observed, have promising implications for PDT of tumors.  相似文献   

16.
We present in vivo fluorescent, near-infrared (NIR), reflectance images of indocyanine green (ICG) and carotene-conjugated 2-devinyl-2-(1-hexyloxyethyl) pyropheophorbide (HPPH-car) to discriminate spontaneous canine adenocarcinoma from normal mammary tissue. Following intravenous administration of 1.0 mg kg-1 ICG or 0.3 mg kg-1 HPPH-car into the canine, a 25 mW, 778 nm or 70 mW, 660 nm laser diode beam, expanded by a diverging lens to approximately 4 cm in diameter, illuminated the surface of the mammary tissue. Successfully propagating to the tissue surface, ICG or HPPH-car fluorescence generated from within the tissue was collected by an image-intensified, charge-coupled device camera fitted with an 830 or 710 nm bandpass interference filter. Upon collecting time-dependent fluorescence images at the tissue surface overlying both normal and diseased tissue volumes, and fitting these images to a pharmacokinetic model describing the uptake (wash-in) and release (wash-out) of fluorescent dye, the pharmacokinetics of fluorescent dye was spatially determined. Mapping the fluorescence intensity owing to ICG indicates that the dye acts as a blood pool or blood persistent agent, for the model parameters show no difference in the ICG uptake rates between normal and diseased tissue regions. The wash-out of ICG was delayed for up to 72 h after intravenous injection in tissue volumes associated with disease, because ICG fluorescence was still detected in the diseased tissue 72 h after injection. In contrast, HPPH-car pharmacokinetics illustrated active uptake into diseased tissues, perhaps owing to the overexpression of LDL receptors associated with the malignant cells. HPPH-car fluorescence was not discernable after 24 h. This work illustrates the ability to monitor the pharmacokinetic delivery of NIR fluorescent dyes within tissue volumes as great as 0.5-1 cm from the tissue surface in order to differentiate normal from diseased tissue volumes on the basis of parameters obtained from the pharmacokinetic models.  相似文献   

17.
9-acetoxy-2,7,12,17-tetrakis-(β-methoxyethyl)-porphycene (ATMPn) is a chemically pure substance with fast pharmacokinetics and superior photodynamic properties in vitro as compared to Photofrin®. In this study the pharmacokinetics, photodynamic efficacy and tissue localization of ATMPn were investigated in vivo.

Amelanotic melanomas (A-Mel-3) were implanted in dorsal skin fold chambers fitted to Syrian Golden hamsters. Fluorescence kinetics of ATMPn (1.4 μmol kg−1 b.w.i.v; n = 8) were monitored by intravital microscopy. Quantitative measurements of fluorescence intensity were carried out by digital image analysis. For tumor growth studies 1.4 μmol kg−1 was injected 24 h (n = 3), 3 h (n = 3), 1 min (n = 6) and 2.8 μmol kg−1 1 min (n = 6) before PDT (Laser (630 nm) or lamp (600–750 nm), 100 mW cm−2, 100 J cm−2). Tumor volume was measured for 28 d. Solid tumors (n = 3) were excised 1 min after injection of ATMPn (2.8 μmol kg−1) and cryostat sections (20 mm) were analyzed by confocal laser scanning microscopy (CLSM) for tissue localization of the dye.

Maximal fluorescence (mean ± S.E.) arose in the tumor (94 ± 7%) and surrounding host tissue (67 ± 5%) 30 s post injection followed by a rapid decrease. Hardly any fluorescence was detectable 12 h after administration. Only PDT 1 min after injection of ATMPn was effective yielding 3/6 complete remissions (2.8 mmol kg−1, laser) and 6/6 complete remissions (2.8 μmol kg−1, lamp), respectively. One minute after injection the dye is primarily localized in the vascular wall of normal and tumor vessels as shown by CLSM.

PDT at a time, when the dye is localized primarily in the tumor microcirculation, exhibits the best tumor killing effects showing that vascular targeting is effective in treating solid malignant tumors. ATMPn in liposomes makes administration and light irradiation in one session possible due to its fast pharmacokinetics. Thus, using ATMPn as a photosensitizer may provide more flexibility to perform PDT after surgical exploration and debulking as adjuvant therapy.  相似文献   


18.
The kinetics of accumulation of protoporphyrin IX (PpIX) after topical application of 5-aminolevulinic acid (ALA) and its methylester (5-aminolevulinic acid methylester [ALA-Me]) was studied on rat oral mucosa. The accumulation of PpIX in mucosa and skin after intravenous injection of ALA and ALA-Me was also studied. The elimination rate of PpIX was dependent on drug and dose as well as on administration route. Application of ALA on rat oral mucosa and skin caused a systemic effect with PpIX building up in remote skin sites not exposed to the drugs. No such systemic effect was seen after application of ALA-Me either in mucosa or on skin. Intravenous injection of the drugs (0.2 g/kg) leads to more fluorescence in the skin than topical application of the drug (20%). For mucosa, the opposite is true. Maximal PpIX fluorescence appeared later after application of high concentrations of the drugs (around 8 h for 5% and 20% wt/wt) than after application of low concentrations (around 3-5 h for 1% and 2% wt/wt).  相似文献   

19.
The pharmacokinetics (PK) of the photosensitizer tetra(m-hydroxyphenyl)chlorin (mTHPC) was measured by optical fiber-based light-induced fluorescence spectroscopy (LIFS) in the normal and tumoral cheek pouch mucosa of 29 Golden Syrian hamsters with chemically induced squamous cell carcinoma. Similar measurements were carried out on the normal oral cavity mucosa of five patients up to 30 days after injection. The drug doses were between 0.15 and 0.3 mg per kg of body weight (mg/kg), and the mTHPC fluorescence in the tissue was excited at 420 nm. The PK in both human and hamster exhibited similar behavior although the PK in the hamster mucosa was slightly delayed in comparison with that of its human counterpart. The mTHPC fluorescence signal of the hamster mucosa was smaller than that of the human mucosa by a factor of about 3 for the same injected drug dose. A linear correlation was found between the fluorescence signal and the mTHPC dose in the range from 0.075 to 0.5 mg/kg at times between 8 and 96 h after injection. No significant selectivity in mTHPC fluorescence between the tumoral and normal mucosa of the hamsters was found at any of the applied conditions. The sensitivity of the normal and tumoral hamster cheek pouch mucosa to mTHPC photodynamic therapy as a function of the light dose was determined by light irradiation at 650 nm and 150 mW/cm2, 4 days after the injection of a drug dose of 0.15 mg/kg. These results were compared with irradiations of the normal oral and normal and tumoral bronchial mucosa of 37 patients under the same conditions. The reaction to PDT of both types of human mucosae was considerably stronger than that of the hamster cheek pouch mucosa. The sensitivity to PDT became comparable between hamster and human mucosa when the drug dose for the hamster was increased to 0.5 mg/kg. A significant therapeutic selectivity between the normal and neoplastic hamster cheek pouch was observed. Less selectivity was found following irradiations of normal mucosa and early carcinomas in the human bronchi. The pharmacodynamic behavior of mTHPC was determined by test irradiations of the normal mucosa of hamsters and patients between 6 h and 8 days after injection of 0.5 and 0.15 mg/kg in the hamsters and the patients, respectively. The normal hamster cheek pouch showed a maximum response to irradiation 6 h after injection and then decreased continuously to no observable reaction at 8 days after injection. The reaction of the normal human oral mucosa, however, showed an increasing sensitivity to the applied light between 6 h and 4 days after mTHPC injection and then decreased again at 8 days. The hamster model with the chemically induced early squamous cell cancer in the cheek pouch thus showed some similarity to the early squamous cell cancer of the human oral mucosa considering the PK. However, a quantitative difference in fluorescence signal for identical mTHPC doses as well as a significant difference in pharmacodynamic behavior were also observed. The suitability of this animal model for the optimization of PDT parameters in the clinic is therefore limited. Hence great care must be taken in screening new dyes for PDT of early squamous cell cancer of the upper aerodigestive tract based upon observables in the hamster cheek pouch model.  相似文献   

20.
As a prerequisite to the determination of pharmacokinetic parameters of icariin in rats, an HPLC method using UV detection was developed and validated. Icariin and the internal standard, quercetin, were extracted from plasma samples using ethyl acetate after acidification with 0.05 mol/L NaH2PO4 solution (pH 5.0). Chromatographic separation was achieved on an Agilent XDB Cls column (250 x 4.6 mm id, 5 microm) equipped with a Shim-pack GVP-ODS C18 guard column (10 x 4.6 mm id, 5 microm) using a mobile phase of ACN/water/acetic acid (31:69:0.4 v/v/v) at a flow rate of 1.0 mL/ min. Detection was at 277 nm. The calibration curve was linear from 0.05 to 100.0 microg/mL with 0.05 microg/mL as the lower LOQ (LLOQ) in plasma. The intra- and interday precisions in terms of RSD were lower than 5.7 and 7.8% in rat plasma, respectively. The accuracy in terms of relative error (RE) ranged from -1.6 to 3.2%. The extraction recoveries of icariin and quercetin were 87.6 and 80.1%, respectively. The main pharmacokinetic parameters for rats were determined after a single intravenous administration of 10 mg/kg icariin: t1/2, 0.562 +/- 0.200 h; AUC0-infinity, 8.73 +/- 2.23 microg x h/mL; CLToT, 20.10 +/- 5.80 L/kg x h; Vz, 1.037 +/- 0.631 L/kg; MRT0-infinity, 0.134 +/- 0.040 h; and Vss, 0.170 +/- 0.097 L/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号