首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Access to advanced study in mathematics, in general, and to calculus, in particular, depends in part on the conceptual architecture of these knowledge domains. In this paper, we outline an alternative conceptual architecture for elementary calculus. Our general strategy is to separate basic concepts from the particular advanced techniques used in their definition and exposition. We develop the beginning concepts of differential and integral calculus using only concepts and skills found in secondary algebra and geometry. It is our underlining objective to strengthen students' knowledge of these topics in an effort to prepare them for advanced mathematics study. The purpose of this reconstruction is not to alter the teaching of limit-based calculus but rather to affect students' learning and understanding of mathematics in general by introducing key concepts during secondary mathematics courses. This approach holds the promise of strengthening more students' understanding of limit-based calculus and enhancing their potential for success in post-secondary mathematics.  相似文献   

2.
High failure rates in calculus have plagued students, teachers, and administrators for decades, while science, technology, engineering, and mathematics programmes continue to suffer from low enrollments and high attrition. In an effort to affect this reality, some educators are ‘flipping’ (or inverting) their classrooms. By flipping, we mean administering course content outside of the classroom and replacing the traditional in-class lectures with discussion, practice, group work, and other elements of active learning. This paper presents the major results from a three-year study of a flipped, first-semester calculus course at a small, comprehensive, American university with a well-known engineering programme. The data we have collected help quantify the positive and substantial effects of our flipped calculus course on failure rates, scores on the common final exam, student opinion of calculus, teacher impact on measurable outcomes, and success in second-semester calculus. While flipping may not be suitable for every teacher, every student, and in every situation, this report provides some evidence that it may be a viable option for those seeking an alternative to the traditional lecture model.  相似文献   

3.
We consider logic of knowledge and past time. This logic involves the discrete-time linear temporal operators next, until, weak yesterday, and since. In addition, it contains an indexed set of unary modal operators agent i knows.We consider the semantic constraint of the unique initial states for this logic. For the logic, we present a sequent calculus with a restricted cut rule. We prove the soundness and completeness of the sequent calculus presented. We prove the decidability of provability in the considered calculus as well. So, this calculus can be used as a basis for automated theorem proving. The proof method for the completeness can be used to construct complete sequent calculi with a restricted cut rule for this logic with other semantical constraints as well. Published in Lietuvos Matematikos Rinkinys, Vol. 46, No. 3, pp. 427–437, July–September, 2006.  相似文献   

4.
In this paper we consider data from a study in which students shift from linear to quadratic equations in ways that do not conform to established theoretical frameworks. In solving linear equations, the students did not exhibit the ‘didactic cut’ of Filloy and Rojano (1989) or the subtleties arising from conceiving an equation as a balance (Vlassis, 2002). Instead they used ‘procedural embodiments’, shifting terms around with added ‘rules’ to obtain the correct answer (Lima & Tall, 2008). Faced with quadratic equations, the students learn to apply the formula with little success. The interpretation of this data requires earlier theories to be seen within a more comprehensive framework that places them in an evolving context. We use the developing framework of three worlds of mathematics (Tall, 2004, Tall, 2013), based fundamentally on human perceptions and actions and their consequences, at each stage taking into account the experiences that students have ‘met-before’ (Lima and Tall, 2008, McGowen and Tall, 2010). These experiences may be supportive in new contexts, encouraging pleasurable generalization, or problematic, causing confusion and even mathematical anxiety. We consider how this framework explains and predicts the observed data, how it evolves from earlier theories, and how it gives insights that have both theoretical and practical consequences.  相似文献   

5.
As part of developmental research for an inquiry-oriented differential equations course, this study investigates the change in students’ beliefs about mathematics. The discourse analysis has identified two different types of perspective modes - i.e., discourse of the third-person perspective and discourse of the first-person perspective - in the students’ mathematical narratives, depending on their ways of positioning themselves with respect to mathematics. In the third-person perspective discourse, the students positioned themselves as passive recipients of mathematics that has been established by some external authority. In the first-person perspective discourse, the students positioned themselves as active mathematical inquirers and produced mathematics by interweaving their own mathematical ideas and experiences. Over the semester, students’ mathematical discourse changed from third-person perspective narratives to first-person perspective narratives. This change in their discourse pattern is interpreted as an indication of change in their beliefs about mathematics. Finally, this article discusses the instructional features that promote the change.  相似文献   

6.
In this paper we show a version of the Fueter mapping theorem that can be stated in integral form based on the Cauchy formulas for slice monogenic (or slice regular) functions. More precisely, given a holomorphic function f of a paravector variable, we generate a monogenic function by an integral transform whose kernel is particularly simple. This procedure allows us to define a functional calculus for n‐tuples of commuting operators (called ?‐functional calculus) based on a new notion of spectrum, called ?‐spectrum, for the n‐tuples of operators. Analogous results are shown for the quaternionic version of the theory and for the related ?‐functional calculus. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Relativizing the popular belief that student effort is the key to success, this article finds that effort in the most advanced mathematics course in US high schools is not consistently associated with college calculus performance. We distinguish two types of student effort: productive and ineffective efforts. Whereas the former carries the commonly expected benefits, the latter is associated with negative consequences. Time spent reading the course text in US high schools was negatively related to college calculus performance. Daily study time, however, was found to be either a productive or an ineffective effort, depending on the level of high school mathematics course and the student's performance in it.  相似文献   

8.
This study presents a subset of factors and their association with students’ achievement in school algebra. The participants were students who had enrolled in 2007 at the ninth year of Greek public education (third year of middle school). A total of 735 students participated (aged 14–15 years) from 37 public secondary schools. The sample consisted of 378 girls (51.4%) and 357 boys (48.6%). A written algebra test and a questionnaire including demographic survey items were used to collect data. The results show that attitude towards mathematics (ATM) and the current teacher rating of mathematics performance were identified as the more significant predictors of algebra achievement, contributing by 18.1% and 24.7%, respectively, in total variance of mean at the end of ninth grade.  相似文献   

9.
10.
This study investigates the pedagogical skills and knowledge of three tertiary-level mathematics support tutors in a large group classroom setting. This is achieved through the use of video analysis and a theoretical framework comprising Rowland's Knowledge Quartet and general pedagogical knowledge. The study reports on the findings in relation to these tutors’ provision of mathematics support to first and second year undergraduate engineering students and second year undergraduate science students. It was found that tutors are lacking in various pedagogical skills which are needed for high-quality learning amongst service mathematics students (e.g. engineering/science/technology students), a demographic which have low levels of mathematics upon entering university. Tutors teach their support classes in a very fast didactic way with minimal opportunities for students to ask questions or to attempt problems. It was also found that this teaching method is even more so exaggerated in mandatory departmental mathematics tutorials that students take as part of their mathematics studies at tertiary level. The implications of the findings on mathematics tutor training at tertiary level are also discussed.  相似文献   

11.
12.
This paper describes a case study of a math teacher working with a math coach and the effects of their interaction. A guiding question was whether the coaching intervention had affected the teacher's classroom practices and, if so, in what way. The study utilized data from teacher/coach planning sessions, classroom lessons, follow-up debriefing sessions, and interviews with the teacher, coach and school principal. These data enabled the author to study the impact, if any, of the coaching on teacher beliefs and practices.  相似文献   

13.
Summary We obtain new sufficient conditions for the existence in a problem of the calculus of variations without convexity assumptions.  相似文献   

14.
Several studies have explored students’ understanding of the relationships between definite integrals and areas under curve(s). So far, however, there has been less attention to students’ understanding of the Fundamental Theorem of Calculus (FTC). In addition, students’ metacognitive experiences and skills whilst solving FTC questions have not previously been explored. This paper explored students’ mathematical performance, metacognitive experiences and metacognitive skills in relation to FTC questions by interviewing nine university and eight Year 13 students. The findings show that several students had difficulty solving questions related to the FTC and that students’ metacognitive experiences and skills could be further developed.  相似文献   

15.
Diversity and differentiation within our classrooms, at all levels of education, is nowadays a fact. It has been one of the biggest challenges for educators to respond to the needs of all students in such a mixed-ability classroom. Teachers’ inability to deal with students with different levels of readiness in a different way leads to school failure and all the negative outcomes that come with it. Differentiation of teaching and learning helps addressing this problem by respecting the different levels that exist in the classroom, and by responding to the needs of each learner. This article presents an action research study where a team of mathematics instructors and an expert in curriculum development developed and implemented a differentiated instruction learning environment in a first-year engineering calculus class at a university in Cyprus. This study provides evidence that differentiated instruction has a positive effect on student engagement and motivation and improves students’ understanding of difficult calculus concepts.  相似文献   

16.
This study investigates an exploratory teaching style used in an undergraduate geometry course to help students identify an ellipse. We attempt to probe beneath the surface of exploration to understand how the actions of teachers can contribute to developing students’ competence in justifying an ellipse. We analyse the complex interactions between student, content, and teacher, and discuss explicit pedagogical strategies that help students develop a higher level of geometric reasoning. The findings indicate that students engaged in guided explorations by the teacher and in group discussions with peers were able to identify an ellipse and justify their reasoning.  相似文献   

17.
In this work, we demonstrate how fractional calculus and time-scale calculus can be combined beautifully to solve and fit a modeling problem. In addition, a cross-validation technique is used to evaluate the fitted model. The specific application that we consider is the one-compartment model. The one-compartment model is a first-order differential equation that describes drug concentration over time. It turns out that approximating the solution by using a fractional model allows us to get more accurate results for model fitting. To quantitatively verify this insight, we compare between a first-order model and anα-order fractional model using real data for drug concentration. Then the mean squared error and a cross-validation method are used to determine the model that provides the best fit and predictions for unseen data.  相似文献   

18.
Lecturers of first-year mathematics often have reason to believe that students enter university studies with naïve conceptions of mathematics and that more mature conceptions need to be developed in the classroom. Students’ conceptions of the nature and role of mathematics in current and future studies as well as future career are pedagogically important as they can impact on student learning and have the potential to influence how and what we teach. As part of ongoing longitudinal research into the experience of a cohort of students registered at the author's institution, students’ conceptions of mathematics were determined using a coding scheme developed elsewhere. In this article, I discuss how the cohort of students choosing to study engineering exhibits a view of mathematics as conceptual skill and as problem-solving, coherent with an accurate understanding of the role of mathematics in engineering. Parallel investigation shows, however, that the students do not embody designated identities as engineers.  相似文献   

19.
The purpose of this article is to offer teaching ideas in the treatment of the definite integral concept and the Riemann sums in a technology-supported environment. Specifically, the article offers teaching ideas and activities for classroom for the numerical methods of approximating a definite integral via left- and right-hand Riemann sums, along with midpoint and trapezoidal Riemann sums. The activities demonstrate innovative and creative ways of integrating technology, in particular, GeoGebra dynamic software, into the pedagogy of college-level integral calculus. It also provides, among other things, interesting and original teaching ideas incorporating technology, and an evaluation of these activities by the students themselves who experienced these activities with the GeoGebra dynamic software.  相似文献   

20.
This paper presents a case study for strategic engagement of students in a Calculus course in order to produce increased learning in the classroom. Since it has been shown that active learning can promote greater comprehension for students in science, technology, engineering, and mathematics (STEM) courses, the researcher utilized many types of active learning techniques to enhance classroom instruction. The key components implemented are presented as a model of enhanced learning through developed classroom engagement. This course redesign model entitled, Strategic Engagement for Increased Learning (SEIL), has the potential to (1) contribute to the body of knowledge on ways to improve mathematics skills for college students, (2) identify successful teaching strategies and technologies that will promote the retention of STEM students, (3) increase the success rate of students taking Calculus, and (4) help produce more STEM graduates needed for the STEM workforce in the United States of America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号