首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Access to advanced study in mathematics, in general, and to calculus, in particular, depends in part on the conceptual architecture of these knowledge domains. In this paper, we outline an alternative conceptual architecture for elementary calculus. Our general strategy is to separate basic concepts from the particular advanced techniques used in their definition and exposition. We develop the beginning concepts of differential and integral calculus using only concepts and skills found in secondary algebra and geometry. It is our underlining objective to strengthen students' knowledge of these topics in an effort to prepare them for advanced mathematics study. The purpose of this reconstruction is not to alter the teaching of limit-based calculus but rather to affect students' learning and understanding of mathematics in general by introducing key concepts during secondary mathematics courses. This approach holds the promise of strengthening more students' understanding of limit-based calculus and enhancing their potential for success in post-secondary mathematics.  相似文献   

2.
This paper is based on a large-scale empirical study designed to investigate Calculus I programmes across the United States to better understand the relationship between instructors' concerns about coverage, instructional practices, and the nature of the material covered. We found that there was no association between instructors feeling pressured to go through material quickly to cover all the required topics and intended pacing. Furthermore, our results suggest that both intended pacing and feelings of pressure are poor indicators of instructional practices.  相似文献   

3.
Many students enter the Canadian college system with insufficient mathematical ability and leave the system with little improvement. Those students who enter with poor mathematics ability typically take a developmental mathematics course as their first and possibly only mathematics course. The educational experiences that comprise a developmental mathematics course vary widely and are, too often, ineffective at improving students’ ability. This trend is concerning, since low mathematics ability is known to be related to lower rates of success in subsequent courses. To date, little attention has been paid to the selection of an instructional approach to consistently apply across developmental mathematics courses. Prior research suggests that an appropriate instructional method would involve explicit instruction and practising mathematical procedures linked to a mathematical concept. This study reports on a randomized field trial of a developmental mathematics approach at a college in Ontario, Canada. The new approach is an adaptation of the JUMP Math program, an explicit instruction method designed for primary and secondary school curriculae, to the college learning environment. In this study, a subset of courses was assigned to JUMP Math and the remainder was taught in the same style as in the previous years. We found consistent, modest improvement in the JUMP Math sections compared to the non-JUMP sections, after accounting for potential covariates. The findings from this randomized field trial, along with prior research on effective education for developmental mathematics students, suggest that JUMP Math is a promising way to improve college student outcomes.  相似文献   

4.
Students learn a lot of material in each mathematics course they take. However, they are not always able to make meaningful connections between content in successive mathematics courses. This paper reports on a technique to address a common topic in calculus I courses (intervals of increase/decrease and concave up/down) while also making use of students’ pre-existing knowledge about the behaviour of functions around zeroes based on multiplicities.  相似文献   

5.
Given the recent radical overhaul of secondary school qualifications in New Zealand, similar in style to those in the UK, there has been a distinct change in the tertiary entrant profile. In order to gain insight into this new situation that university institutions are faced with, we investigate some of the ways in which these recent changes have impacted upon tertiary level mathematics in New Zealand. To this end, we analyse the relationship between the final secondary school qualifications in Mathematics with calculus of incoming students and their results in the core first-year mathematics papers at Canterbury since 2005, when students entered the University of Canterbury with these new reformed school qualifications for the first time. These findings are used to investigate the suitability of this new qualification as a preparation for tertiary mathematics and to revise and update entrance recommendations for students wishing to succeed in their first-year mathematics study.  相似文献   

6.
This paper reports a study on retention of differential and integral calculus concepts of a second-year student of physical chemistry at a Danish university. The focus was on what knowledge the student retained 14 months after the course and on what effect beliefs about mathematics had on the retention. We argue that if a student can quickly reconstruct the knowledge, given a few hints, this is just as good as retention. The study was conducted using a mixed method approach investigating students’ knowledge in three worlds of mathematics. The results showed that the student had a very low retention of concepts, even after hints. However, after completing the calculus course, the student had successfully used calculus in a physical chemistry study programme. Hence, using calculus in new contexts does not in itself strengthen the original calculus learnt; they appeared as disjoint bodies of knowledge.  相似文献   

7.
Frequently, in the US students’ work with proofs is largely concentrated to the domain of high school geometry, thus providing students with a distorted image of what proof entails, which is at odds with the central role that proof plays in mathematics. Despite the centrality of proof in mathematics, there is a lack of studies addressing how to integrate proof into other mathematical domains. In this paper, we discuss a teaching experiment designed to integrate algebra and proof in the high school curriculum. Algebraic proof was envisioned as the vehicle that would provide high school students the opportunity to learn not only about proof in a context other than geometry, but also about aspects of algebra. Results from the experiment indicate that students meaningfully learned about aspects of both algebra and proof in that they produced algebraic proofs involving multiple variables, based on conjectures they themselves generated.  相似文献   

8.
Several studies have explored students’ understanding of the relationships between definite integrals and areas under curve(s). So far, however, there has been less attention to students’ understanding of the Fundamental Theorem of Calculus (FTC). In addition, students’ metacognitive experiences and skills whilst solving FTC questions have not previously been explored. This paper explored students’ mathematical performance, metacognitive experiences and metacognitive skills in relation to FTC questions by interviewing nine university and eight Year 13 students. The findings show that several students had difficulty solving questions related to the FTC and that students’ metacognitive experiences and skills could be further developed.  相似文献   

9.
This paper gives an account of an experiment in which 33 high school students of age 16–19 acquired the principles of the integral calculus through applying the rectangle method in spreadsheet to calculate the area of a planar figure bounded by the graph of a function and the volume of a body created by the rotation of the graph. A questionnaire survey was carried out to find out whether the students found the lesson interesting, contributing to their mathematical and technological knowledge and motivating to continue with more complicated tasks.  相似文献   

10.
In this paper we report on the outcomes of two surveys carried out in higher education institutions of Ireland; one of students attending first-year undergraduate non-specialist mathematics modules and another of their lecturers. The surveys aimed to identify the topics that these students found difficult, whether they had most difficulty with the concepts or procedures involved in the topics, and the resources they used to overcome these difficulties. In this paper we focus on the mathematical concepts and procedures that students found most difficult. While there was agreement between students and lecturers on certain problematic topics, this was not uniform across all topics, and students rated their conceptual understanding higher than their ability to do questions, in contrast to lecturers’ opinions.  相似文献   

11.
“Lesson plan study” (LPS), adapted from the Japanese Lesson Study method of professional development, is a sequence of activities designed to engage prospective teachers in broadening and deepening their understanding of school mathematics and teaching strategies. LPS occurs over 5 weeks on the same lesson topic and includes four opportunities to revisit one's own ideas and the ideas of others. In this paper, we describe one prospective teacher's growth in understanding right triangle trigonometry as she participated in LPS. This study is part of a much larger study investigating how prospective secondary teachers learn to teach mathematics within the context of LPS. Results of this study indicate that Image Saying, an activity for growth in understanding from the Pirie-Kieren model [Pirie, S., & Kieren, T. (1994). Growth in mathematical understanding: How can we characterize it and how can we represent it? Educational Studies in Mathematics, 26, 165-190], is critical to prospective teachers’ growth in understanding school mathematics. Multiple opportunities and contexts within which to share understanding of school mathematics led to significant growth in understanding of right triangle trigonometry which in turn led to growth in understanding of teaching strategies. That is, the results of this study indicate that growth in understanding school mathematics (what to teach) leads to growth in understanding teaching strategies (how to teach) as prospective teachers participate in LPS.  相似文献   

12.
Diversity and differentiation within our classrooms, at all levels of education, is nowadays a fact. It has been one of the biggest challenges for educators to respond to the needs of all students in such a mixed-ability classroom. Teachers’ inability to deal with students with different levels of readiness in a different way leads to school failure and all the negative outcomes that come with it. Differentiation of teaching and learning helps addressing this problem by respecting the different levels that exist in the classroom, and by responding to the needs of each learner. This article presents an action research study where a team of mathematics instructors and an expert in curriculum development developed and implemented a differentiated instruction learning environment in a first-year engineering calculus class at a university in Cyprus. This study provides evidence that differentiated instruction has a positive effect on student engagement and motivation and improves students’ understanding of difficult calculus concepts.  相似文献   

13.
In this work we study nonnegativity and positivity of a discrete quadratic functional with separately varying endpoints. We introduce a notion of an interval coupled with 0, and hence, extend the notion of conjugate interval to 0 from the case of fixed to variable endpoint(s). We show that the nonnegativity of the discrete quadratic functional is equivalent to each of the following conditions: The nonexistence of intervals coupled with 0, the existence of a solution to Riccati matrix equation and its boundary conditions. Natural strengthening of each of these conditions yields a characterization of the positivity of the discrete quadratic functional. Since the quadratic functional under consideration could be a second variation of a discrete calculus of variations problem with varying endpoints, we apply our results to obtain necessary and sufficient optimality conditions for such problems. This paper generalizes our recent work in [R. Hilscher, V. Zeidan, Comput. Math. Appl., to appear], where the right endpoint is fixed.  相似文献   

14.
We compare two lessons with respect to how a teacher centers student mathematical thinking to move instruction forward through enactment of five mathematically productive teaching routines: Conferring To Understand Student Thinking and Reasoning, Structuring Mathematical Student Talk, Working With Selected and Sequenced Student Math Ideas, Working with Public Records of Students’ Mathematical Thinking, and Orchestrating Mathematical Discussion. Findings show that the lessons differ in the enactment of teaching routines, especially Conferring to Understand Student Thinking and Reasoning which resulted in a difference in student-centeredness of the instruction. This difference highlights whose mathematics was being centralized in the classroom and whether the focus was on correct answers and procedures or on students’ mathematical thinking and justifying.  相似文献   

15.
This case study investigates students' perspectives on their mathematics learning experiences and identity constructions, in the context of transition to secondary school. In-depth, semi-structured interviews were conducted with six girls, halfway through their first year at their new school. Thematic analysis and discourse analysis were used to interpret and deconstruct their narratives. The girls' stories contribute to our understandings of how confidence in mathematics is discursively constructed. The stories also clarify the importance of gaining a sense of belonging in the transition from primary to secondary school mathematics. Through promoting this belonging within the mathematics classroom, teachers may engender confident performances in class and, through this, contribute to the construction of positive mathematical identities.  相似文献   

16.
The UK Government has set a goal that the “vast majority” of students in England will be studying mathematics to the age of 18 by the end of the decade. The policy levers for achieving this goal include new Core Maths qualifications, designed for over 200,000 students who have achieved good grades at the age of 16 but then opt out of advanced or A level mathematics. This article reports findings from a cluster-sampled survey of over 10,000 17-year-olds in England in 2015. Participants’ views on post-16 mathematics are presented and discussed. The main finding is that they are strongly opposed to the idea of compulsory mathematical study, but are less antithetical to being encouraged to study mathematics beyond 16. We consider how attitudes vary by gender, prior attainment, study patterns and future aspirations. The article considers the implications of these findings in the current policy landscape.  相似文献   

17.
Cross-national research studies such as the Program for International Student Assessment and the Third International Mathematics and Science Study (TIMSS) have contributed much to our understandings regarding country differences in student achievement in mathematics, especially at the primary (elementary) and lower secondary (middle school) levels. TIMSS, especially, has demonstrated the central role that the concept of opportunity to learn plays in understanding cross-national differences in achievement Schmidt et al., (Why schools matter: A cross-national comparison of curriculum and learning  2001). The curricular expectations of a nation and the actual content exposure that is delivered to students by teachers were found to be among the most salient features of schooling related to academic performance. The other feature that emerges in these studies is the importance of the teacher. The professional competence of the teacher which includes substantive knowledge regarding formal mathematics, mathematics pedagogy and general pedagogy is suggested as being significant—not just in understanding cross-national differences but also in other studies as well (Hill et al. in Am Educ Res J 42(2):371–406, 2005). Mathematics Teaching in the 21st Century (MT21) is a small, six-country study that collected data on future lower secondary teachers in their last year of preparation. One of the findings noted in the first report of that study was that the opportunities future teachers experienced as part of their formal education varied across the six countries (Schmidt et al. in The preparation gap: Teacher education for middle school mathematics in six countries, 2007). This variation in opportunity to learn (OTL) existed in course work related to formal mathematics, mathematics pedagogy and general pedagogy. It appears from these initial results that OTL not only is important in understanding K-12 student learning but it is also likely important in understanding the knowledge base of the teachers who teach them which then has the potential to influence student learning as well. This study using the same MT21 data examines in greater detail the configuration of the educational opportunities future teachers had during their teacher education in some 34 institutions across the six countries.  相似文献   

18.
Paraprofessionals increasingly work alongside teachers in many countries, with research suggesting they undertake pedagogic roles for which they are not formally prepared. We investigate this from the perspective of paraprofessionals supporting individual children with special needs in primary schools in Cyprus and England and develop a typology to conceptualise their views of their role in mathematics lessons in relation to children, teachers and mathematical processes. All perceive themselves as explaining mathematical ideas and dealing with difficulties. Some report having major or sole responsibility for teaching and planning mathematics. The vast majority feel able to do their job with only informal preparation, often linking this to the low level of mathematics involved. We argue that the current situation is contrary to the subject knowledge literature. Expectations placed on paraprofessionals and the mathematical experiences of the children they support arouse concerns.  相似文献   

19.
Previous research has documented the importance of setting up productive norms in mathematics classrooms. Studies have also shown the potential for activities involving interactive simulations (sims) to support student engagement and learning. In this study, we investigated the relationship between norms and sim-based activities. In particular, we examined the social and sociomathematical norms in lessons taught with and without the use of PhET sims in the same teacher’s middle-school mathematics classroom. There were statistically significant differences in indicators of social norms between the two types of lessons. In sim lessons, the teacher more frequently took the role of a facilitator of mathematical ideas, and students exhibited conceptual agency more often than they did in non-sim lessons. On the other hand, there was substantial overlap: the teacher usually acted as an evaluator, and the students usually exhibited disciplinary agency in both types of lessons. However, there was a stark contrast in sociomathematical norms between the two types of lessons. Students’ specifically mathematical obligations in non-sim lessons consistently included practicing procedures in isolation and appealing to rules. Obligations in sim lessons included developing and sharing strategies, making conjectures and providing justifications. In both types of lessons, students were obligated to recall mathematical facts and vocabulary. Thus, the social norms were broadly consistent except for important differences in frequency, whereas we found substantial qualitative contrasts in the sociomathematical norms in the two types of lessons. This case provides evidence that contrasting norms can exist within the same classroom. We argue from our data that these differences may be mediated by curricular choices—in this case, the use of sims.  相似文献   

20.
Students’ experiences with proving in schools often lead them to see proof as a static product rather than a negotiated process that can help students justify and make sense of mathematical ideas. We investigated how authority manifested in whole-class proving episodes within Ms. Finley’s high school geometry classroom. We designed a coding scheme that helped us identify the proving actions and interactions that occurred during whole-class proving and how Ms. Finley and her students contributed to those processes. By considering the authority over proof initiation, proof construction, and proof validation, the episodes illustrate how whole-class proving interactions might relate to students’ potential development (or maintenance) of authoritative proof schemes. In particular, the authority of the teacher and textbook limited students’ opportunities to engage collectively in proving and sometimes allowed invalid arguments to be accepted in the public discourse. We offer suggestions for research and practice with respect to authority and proof instruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号