首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
In this paper, I argue that the Shrapnel–Costa no-go theorem undermines the last remaining viability of the view that the fundamental ontology of quantum mechanics is essentially classical: that is, the view that physical reality is underpinned by objectively real, counterfactually definite, uniquely spatiotemporally defined, local, dynamical entities with determinate valued properties, and where typically ‘quantum’ behaviour emerges as a function of our own in-principle ignorance of such entities. Call this view Einstein–Bell realism. One can show that the causally symmetric local hidden variable approach to interpreting quantum theory is the most natural interpretation that follows from Einstein–Bell realism, where causal symmetry plays a significant role in circumventing the nonclassical consequences of the traditional no-go theorems. However, Shrapnel and Costa argue that exotic causal structures, such as causal symmetry, are incapable of explaining quantum behaviour as arising as a result of noncontextual ontological properties of the world. This is particularly worrying for Einstein–Bell realism and classical ontology. In the first instance, the obvious consequence of the theorem is a straightforward rejection of Einstein–Bell realism. However, more than this, I argue that, even where there looks to be a possibility of accounting for contextual ontic variables within a causally symmetric framework, the cost of such an account undermines a key advantage of causal symmetry: that accepting causal symmetry is more economical than rejecting a classical ontology. Either way, it looks like we should give up on classical ontology.  相似文献   

3.
We study the properties of a causal quantum theory in phase space for which phase space classical mechanics is obtained as a limit. The causal quantum theory is obtained from a generalized coherent state representation. The behavior for the one particle case and the manyparticle case are illustrated for the harmonic oscillator. We also answer to the arguments against the possibility of constructing causal theories in phase space.  相似文献   

4.
We present a new approach to the unification of gravity and non-Abelian gauge fields in the framework of Kaluza-Klein theory. It consists in introducing a new connection on the (n + 4)-dimensional manifoldP (metrized principal fiber bundle). This connection is metrical, but with nonvanishing torsion. An enormous cosmological term in the Einstein equations vanishes due to this connection. The new connection simultaneously cancels Planck's mass term in the Dirac equation for the five-dimensional case. The usual interpretation of geodesic equations is still valid.  相似文献   

5.
A retrocausal interpretation of quantum mechanics is examined and is applied to the problem of measuring an optical qubit before the qubit is actually created. Although the predictions of the retrocausal interpretation are the same as for the conventional causal picture, it provides a new perspective which should give a useful way of understanding some quantum mechanical processes.  相似文献   

6.
7.
8.
Quantum mechanics and its interpretation are connected in a manifold way by the measuring process. The measuring apparatus serve as a means for the verification of the theory and are considered as physical objects also subject to the Jaws of this theory. On the basis of this interrelation some parts of the interpretation can be derived from other parts by means of quantum theory. On the other hand there are interpretations which must be excluded on the basis of the quantum theory of measurement.  相似文献   

9.
An analysis of the complete Schwarzschild manifold M is performed. The Finkelstein time is assumed to order the events causally, instead of the Kruskal time. As a consequence of this assumption, the mutual causal behavior of the four Schwarzschild regions contained in M allows one to conceive of a dynamical mechanism which could produce the main features of M in some region of spacetime. Assuming the strong principle of equivalence, one predicts a significant blue shift of the radiation emitted by matter emerging from the r = 0singularity. This phenomenon has not been observed. A way to reconcile the assumption that M is physical with the absence of blue shifts is to require only a weaker equivalence principle, namely the local validity of the principle of (special) relativity in any local inertial frame. From such an equivalence principle, which one cannot renounce without giving up the whole theory of relativity, it is possible to deduce the ratio between the frequencies (as measured by an observer at rest in the asymptotically flat domain) emitted by two identical transmitters at the Schwarzschild times at which they reach the same 3-space point of the exterior Schwarzschild region along different geodesics. A physical interpretation of the peculiar feature of M of being the union of four regions with an infinitespace-like extension is suggested. Such an interpretation is mainly based on a general relativity generalization of the space-time previously introduced in the special relativity theory of superluminal frames.  相似文献   

10.
Quantum Mechanics can be viewed as a linear dynamical theory having a familiar mathematical framework but a mysterious probabilistic interpretation, or as a probabilistic theory having a familiar interpretation but a mysterious formal framework. These points of view are usually taken to be somewhat in tension with one another. The first has generated a vast literature aiming at a “realistic” and “collapse-free” interpretation of quantum mechanics that will account for its statistical predictions. The second has generated an at least equally large literature aiming to derive, or at any rate motivate, the formal structure of quantum theory in probabilistically intelligible terms. In this paper I explore, in a preliminary way, the possibility that these two programmes have something to offer one another. In particular, I show that a version of the measurement problem occurs in essentially any non-classical probabilistic theory, and ask to what extent various interpretations of quantum mechanics continue to make sense in such a general setting. I make a start on answering this question in the case of a rudimentary version of the Everett interpretation.  相似文献   

11.
12.
A consistent causal interpretation of the Klein-Gordon equation treated as a field equation has been developed, and leads to a model of entities described by the Klein-Gordon equation, i.e., spinless, massive bosons, as objectively existing fields. The question arises, however, as to whether a causal interpretation based on a particle ontology of the Klein-Gordon equation is also possible. Our purpose in this article will be to indicate, by making what we believe is a best possible attempt at developing a particle interpretation of the Klein-Gordon equation, that such an interpretation is untenable. To resolve the nonpositive-definite probability density difficulties with the Klein-Gordon equation, we modify this equation by the introduction of an evolution parameter. We base our subsequent considerations on this modified Klein-Gordon equation. Partly to motivate the need for a relativistic causal interpretation and partly to give emphasis to aspects of the causal interpretation often overlooked, we begin our article with a brief historical survey of the causal interpretation.Other work commitments prevented publication of this article in the special issue ofFoundations of Physics in honor of Prof. J. P. Vigier. I would nevertheless like to dedicate this work to Prof. Vigier in recognition of this untiring contributions to the causal interpretation in particular and to the foundations of physics in general. I take this opportunity to thank Prof. Vigier for his help during my Royal Society fellowship spent at the Institut Henri Poincaré in the academic year 1988–1989.  相似文献   

13.
In this paper we point out some possible links between different approaches to quantum gravity and theories of the Planck scale physics. In particular, connections between loop quantum gravity, causal dynamical triangulations, Ho?ava–Lifshitz gravity, asymptotic safety scenario, Quantum Graphity, deformations of relativistic symmetries and nonlinear phase space models are discussed. The main focus is on quantum deformations of the Hypersurface Deformations Algebra and Poincaré algebra, nonlinear structure of phase space, the running dimension of spacetime and nontrivial phase diagram of quantum gravity. We present an attempt to arrange the observed relations in the form of a graph, highlighting different aspects of quantum gravity. The analysis is performed in the spirit of a mind map, which represents the architectural approach to the studied theory, being a natural way to describe the properties of a complex system. We hope that the constructed graphs (maps) will turn out to be helpful in uncovering the global picture of quantum gravity as a particular complex system and serve as a useful guide for the researchers.  相似文献   

14.
It is shown that for Mindlin media with fields of defects there is an alternative interpretation allowing to describe the material affected by defects as equivalent functionally-gradient material with varying properties for coordinates, modeled in the classical theory of elasticity. We establish clear relationships for determining the properties of functionally graded materials by the solutions, taking into account the availability of fields of defects. It is shown that, in general, the properties of equivalent functionally-gradient material depend on the coordinates, as well as on the loading and boundary conditions.  相似文献   

15.
16.
The causal properties of the family of Kerr-de Sitter spacetimes are analyzed and compared to those of the Kerr family. First, an inextendible Kerr-de Sitter spacetime is obtained by joining together Carter’s blocks, i.e. suitable four dimensional spacetime regions contained within Killing horizons or within a Killing horizon and an asymptotic de Sitter region. Based on this property, and leaving aside topological identifications, we show that the causal properties of a Kerr-de Sitter spacetime are determined by the causal properties of the individual Carter’s blocks viewed as spacetimes in their own right. We show that any Carter’s block is stably causal except for the blocks that contain the ring singularity. The latter are vicious sets, i.e. any two events within such block can be connected by a future (respectively past) directed timelike curve. This behavior is identical to the causal behavior of the Boyer–Lindquist blocks that contain the Kerr ring singularity. These blocks are also vicious as demonstrated long ago by Carter. On the other hand, while for the case of a naked Kerr singularity the entire spacetime is vicious and thus closed timelike curves pass through any event including events in the asymptotic region, for the case of a Kerr-de Sitter spacetime the cosmological horizons protect the asymptotic de Sitter region from a-causal influences. In that regard, a positive cosmological constant appears to improve the causal behavior of the underlying spacetime.  相似文献   

17.
The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency—or potentiality—of a property is quantified by the associated quantum probability. The resulting single-case interpretation of probability as a degree of reality will be explained in detail and its role in addressing the tensions between quantum and classical accounts of the physical world will be elucidated. It will be shown that potentiality can be viewed as a causal agency that evolves in a well-defined way.  相似文献   

18.
We elaborate an interpretation of quantum physics founded on the hypothesis that quantum particles are conceptual entities playing the role of communication vehicles between material entities composed of ordinary matter which function as memory structures for these quantum particles. We show in which way this new interpretation gives rise to a natural explanation for the quantum effects of interference and entanglement by analyzing how interference and entanglement emerge for the case of human concepts. We put forward a scheme to derive a metric based on similarity as a predecessor for the structure of ‘space, time, momentum, energy’ and ‘quantum particles interacting with ordinary matter’ underlying standard quantum physics, within the new interpretation, and making use of aspects of traditional quantum axiomatics. More specifically, we analyze how the effect of non-locality arises as a consequence of the confrontation of such an emerging metric type of structure and the remaining presence of the basic conceptual structure on the fundamental level, with the potential of being revealed in specific situations.  相似文献   

19.
《Physics letters. A》1986,113(7):359-364
Based on a recent association of quantum observable algebra with stochastic processes in the frame of the causal stochastic interpretation of quantum mechanics, a relativistic Hilbert space is defined for the Klein-Gordon case. It is demonstrated that unitary transformations in Hilbert space reflect canonical transformations in the associated phase space, manifesting thus an underlying symplectic structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号