首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
By applying the phase-plane technique to velocity data in the near-wake of a circular cylinder, three types of critical points are identified. Foci and saddle points occur most frequently, but a significant number of nodes is also found. Flow topology and properties associated with these points are examined in some detail. While foci and saddle points are associated with maxima of local vorticity and strain rate respectively, nodes are associated with a strong local divergence, indicating significant local three-dimensionality. The relative probability of time delay between critical points is also discussed.  相似文献   

3.
The influence of a wake-mounted splitter plate on the flow around a surface-mounted circular cylinder of finite height was investigated experimentally using a low-speed wind tunnel. The experiments were conducted at a Reynolds number of Re=7.4×104 for cylinder aspect ratios of AR=9, 7, 5 and 3. The thickness of the boundary layer on the ground plane relative to the cylinder diameter was δ/D=1.5. The splitter plates were mounted on the wake centreline with negligible gap between the base of the cylinder and the leading edge of the plate. The lengths of the splitter plates, relative to the cylinder diameter, ranged from L/D=1 to 7, and the plate height was always equal to the cylinder height. Measurements of the mean drag force coefficient were obtained with a force balance, and measurements of the vortex shedding frequency were obtained with a single-component hot-wire probe situated in the wake of the cylinder–plate combination. Compared to the well-studied case involving an infinite circular cylinder, the splitter plate was found to be a less effective drag-reduction device for finite circular cylinders. Significant reduction in the mean drag coefficient was realized only for the finite circular cylinder of AR=9 with intermediate-length splitter plates of L/D=1–3. The mean drag coefficients of the other cylinders were almost unchanged. In terms of its effect on vortex shedding, a splitter plate of sufficient length was able to suppress Kármán vortex shedding for all of the finite circular cylinders tested. For AR=9, vortex shedding suppression occurred for L/D≥5, which is similar to the case of the infinite circular cylinder. For the smaller-aspect-ratio cylinders, however, the splitter plate was more effective than what occurs for the infinite circular cylinder: for AR=3, vortex shedding suppression occurred for all of the splitter plates tested (L/D≥1); for AR=5 and 7, vortex shedding suppression occurred for L/D≥1.5.  相似文献   

4.
The flow around a circular cylinder with a cross-section variation is experimentally investigated. Particle Image Velocimetry (PIV) is used to scrutinize the interaction of the cylinder’s wall with its near wake. The Reynolds number based on the cylinder’s diameter and freestream velocity is 80 × 103, corresponding to the upper subcritical flow regime. At a forcing Strouhal number of St f = 0.02, the maximum vorticity level around the cylinder is reduced by more than 50% as compared to its uncontrolled value. The topology of the bulk flow confined between the primary vortical structure and the cylinder surface is modified resulting in substantial drag reduction.  相似文献   

5.
A numerical investigation of three-dimensional sinusoidally oscillating flow around a circular cylinder was conducted to examine mushroom-type structures in the near wake that are manifestations of the Honji instability. The focus of this paper is to examine the flow structure through the analysis of the streaklines in the flow. Through the use of streakline visualizations and their correlation with vorticity in the flow field, the onset and development of the mushroom-type structures is followed. The parameter value range is 0.1<KC<2.0 and β=1035, 6815, and 9956. The streakline patterns in several axial planes are examined and used to describe the various mechanisms that sustain the mushroom-type structure during the oscillatory cycle.  相似文献   

6.
Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a second-order in time and a combined finite-difference/spectral approximations are used to solve the filtered three-dimensional incompressible Navier-Stokes equations. Calculations have been performed with and without the SGS model. Turbulence statistical behaviors and flow structures in the near wake of the cylinder are studied. Some calculated results, including the lift and drag coefficients, shedding frequency, peak Reynolds stresses, and time-average velocity profile, are in good agreement with the experimental and computational data, which shows that the Smagorinsky model can reasonably predict the global features of the flow and some turbulent statistical behaviors. The project supported by the National Science Fund for Distinguished Scholars (10125210), the Special Funds for Major State Basic Research Project (G1999032801) and the National Natural Science Foundation of China (19772062)  相似文献   

7.
8.
The velocity field of the turbulent very near wake of a circular cylinder   总被引:7,自引:0,他引:7  
Hot-wire measurements were conducted in the very near wake (x/d10) of a circular cylinder at a Reynolds number based on cylinder diameter, Re d of 3900. Measurements of the streamwise velocity component with the use of single sensor hot-wire probes were found to be inaccurate for such flowfields where high flow angles are present. An X-array probe provided detailed streamwise and lateral velocity component statistics. Frequency spectra of these two velocity components are also presented. Measurements with a 4-sensor hot-wire probe confirmed that the very near wake region is dominantly two-dimensional, thus validating the accuracy of the present X-array data.This study has been funded by the NASA-Ames University Consortium Cooperative Agreement, NCC2-5003. We wish to thank Patrick Beaudan for providing us with the LES results for comparison and Parviz Moin for his interest in and encouragement of this experiment to provide validation data for the LES. We also wish to thank loseph Murray for his help with the look-up-table data reduction program.  相似文献   

9.
The separated shear layer in the near wake of a circular cylinder was investigated using a single hot wire probe, with special attention given to the shear layer instability characteristics. Without end plates to force parallel vortex shedding, the critical Reynolds number for the onset of the instability was 740. The present data, together with all previously published data, show that the ratio of the instability frequency fsl to the vortex shedding frequency fv varies as Re0.65, which is in agreement with the Re0.67 dependence obtained by Prasad and Williamson [1997, J Fluid Mech 333:375–402]. However, the distribution of fsl/fv and the spectra of the longitudinal velocity fluctuation (u) suggest that, on either side of Re=5,000, the shear layer exhibits lower and upper subcritical regimes, in support of the observations by Norberg [1987, publication no. 87/2, Chalmers University of Technology, Sweden] and Prasad and Williamson [1997, J Fluid Mech 343:235–265]. The spectra of u provide strong evidence for the occurrence of vortex pairing in wake shear layers, suggesting that the near wake develops in a similar manner to a mixing layer.  相似文献   

10.
In this work, we investigate the dynamics of the near wake in a turbulent flow going past a circular cylinder with/without particles at a moderate Reynolds number using a direct numerical simulation method. High-order finite-deference schemes are applied to solve for the bulk fluid properties, and a Lagrangian approach is adopted to track the individual particles. The single-phase flow is analysed and validated using previous experimental data. Two converged states, U- and V-shaped, are observed in the near wake, which are consistent with the experimental results. For the two-phase flow, the addition of smaller particles shortens the length of the recirculation region and causes a V-shaped profile to form behind the circular cylinder. Furthermore, the particles increase the drag force from the circular cylinder and suppress the vortex shedding frequency. An increase in the turbulent statistics in the very near wake and a decrease in the turbulent statistics further downstream are also observed.  相似文献   

11.
Simultaneous measurement of fluctuating velocity and pressure by a static-pressure probe and a hot-wire probe was performed in the near wake of a circular cylinder, in order to strengthen reliability of the measurement technique. Effect of geometry of the static-pressure probe was systematically investigated, and validity of the measurement results was addressed by quantitative comparison with reference data by a large-eddy simulation. Interference between the probes was found to mainly depend on the diameter of the pressure probe and only weakly on the length. A certain time lag between the velocity and pressure signals was detected in the experiment, and the measurement results of velocity–pressure correlation $\overline{up}$ and $\overline{vp}$ obtained with the correction of the time lag were in good agreement with the computational results. It was also found that the measurement of $\overline{vp}$ is extremely sensitive to a small time lag between the velocity and pressure signals, while that of $\overline{up}$ is not.  相似文献   

12.
This study reveals the interaction patterns of separated shear layers from a circular cylinder with a short downstream plate and their reflection on the frequency and the formation length of the vortices from the cylinder as a function of plate location relative to the cylinder. The effect of horizontal (G/D) and vertical (Z/D) distances between the cylinder and the plate on the near wake is studied via Digital Particle Image Velocimetry (DPIV) in a water channel for Reynolds numbers of 200, 400 and 750, based on the cylinder diameter D. It is shown that the interaction of wake with the plate of length D can be categorized depending on the horizontal and the vertical distances between the cylinder and the plate. For the vertical distance range of Z/D ≤ 0.7, there is a critical horizontal spacing before which the shear layers from the cylinder are inhibited to form vortices in front of the plate. Resulting elongated recirculation region between the plate and the cylinder suggests modification of the absolutely unstable near wake of free circular cylinder in favor of convective instability. Z/D = 0.9 provides a passage from Z/D ≤ 0.7 to ≥1.1 and is associated with a dominant effect on the near-wake characteristics of interaction of shear layers from the cylinder with those from the downstream plate. For Z/D ≥ 1.1, there is again, yet a smaller critical horizontal spacing after which vortices interact with decreased downstream plate interference. In this vertical separation distance range, a gap flow between the plate and the cylinder plays a determining role on the formation length and St number of vortices for small horizontal spacing values.  相似文献   

13.
Particle image velocimetry measurements are performed in the near wake of a circular cylinder at a Reynolds number of 12,500. Attention is focused on the shear layer that develops just downstream of the separation point from the cylinder surface to investigate the possible existence of a preferred spatio-temporal organization in this flow region and the possible occurrence of the vortex pairing phenomenon. Eddy structures are identified in instantaneous velocity maps in order to investigate their spatial relationships. For that purpose a vortex extraction procedure is designed, based on the wavelet transform of instantaneous maps of the swirling strength. This algorithm allows not only the detection of the vortical structures from the instantaneous velocity fields, giving access to their instantaneous location, but also the estimation of their main characteristics such as their radius, intensity and convection velocity. The vortex population detected in the shear layer is found to be of small diameter compared to that of the von Kármán vortex and of rather high intensity, in agreement with the existence of a thin shear layer. The strong flapping motion of the shear layer and its complex spatial development is also confirmed. By employing conditional analysis of the computed data and their proper scaling, the surrounding of the detected vortex cores is investigated. A preferred spatial vortex separation is detected and is shown to vary with the longitudinal distance from the origin of the shear layer, in agreement with the qualitative behavior of a turbulent plane mixing layer. Evidence of the occurrence of the vortex pairing or amalgamation mechanisms in the shear layer is also demonstrated.  相似文献   

14.
Symmetric perturbations imposed on cylinder wakes may result in a modification of the vortex shedding mode from its natural antisymmetric, or alternating, to a symmetric one where twin vortices are simultaneously shed from both sides of the cylinder. In this paper, the symmetric mode in the wake of a circular cylinder is induced by periodic perturbations imposed on the in-flow velocity. The wake field is examined by PIV and LDV for Reynolds numbers about 1200 and for a range of perturbation frequencies between three and four times the natural shedding frequency of the unperturbed wake. In this range, a strong competition between symmetric and antisymmetric vortex shedding occurs for the perturbation amplitudes employed. The results show that symmetric formation of twin vortices occurs close to the cylinder synchronized with the oscillatory component of the flow. The symmetric mode rapidly breaks down and gives rise to an antisymmetric arrangement of vortex structures further downstream. The downstream wake may or may not be phase-locked to the imposed oscillation. The number of cycles for which the symmetric vortices persist in the near wake is a probabilistic function of the perturbation frequency and amplitude. Finally, it is shown that symmetric shedding is associated with positive energy transfer from the fluid to the cylinder due to the fluctuating drag.  相似文献   

15.
Active and passive flow control methods have been studied for decades, but there have been only a few studies of flow control methods using ion wind, which is the bulk motion of neutral molecules driven by locally ionized air from a corona discharge. This paper describes an experimental study of ion wind wake control behind a circular cylinder. The experimental conditions consisted of a range of electrohydrodynamic numbers—the ratio of an electrical body force to a fluid inertial force—from 0 to 2 and a range of Reynolds numbers from 4×103 to 8×103. Pressure distributions over the cylinder surface were measured and flow visualizations were carried out using a smoke-wire method. The flow visualizations confirmed that ion wind significantly affects the wake structure behind a circular cylinder, and that the pressure drag can be dramatically reduced by superimposing ion wind.List of symbols BR blockage ratio - C d coefficient of the pressure drag - C p coefficient of the surface pressure, 2(pp 0)/(U 0 2) - C pb coefficient of the base surface pressure, 2(p bp 0)/(U 0 2) - D diameter of the cylinder - D P pressure drag - d p diameter of particle - E the electric field - F e Coulombian force (qE) - F v viscous force - H wire-to-cylinder spacing - I total electric current (A) - L the axial length of cylinder (m) - N EHD electrohydrodynamic number - p b base pressure of cylinder at =180° - p 0 reference static pressure at 10D upstream - q the charge on the particle - R radius of the cylinder - V applied voltage (kV) - U 0 mean flow velocity (m/s) - ion mobility in air (m2/(s V)) - 0 permittivity of free space - viscosity of fluid (kg/ms) - density of fluid (kg/m3) - installation angle of a wire electrode (°)  相似文献   

16.
The near wake of a circular cylinder at high Reynolds number is investigated by means of 2D-PIV and stereoscopic PIV. Phase-averaged measurements of the instantaneous fields have been performed. The linear stochastic estimation (LSE) has been adapted to estimate the phase-averaged quantities. This avoids the long time acquisition and the large storage needed for phase averaging. A good comparison is achieved between the results of the conditional sampling and those of LSE. Therefore, the estimation has been applied to the three-component datas and allowed evaluation of the whole phase-averaged turbulent stress tensor.  相似文献   

17.
This experimental study is devoted to the diffusion of a passive scalar downstream a line source located in a Bénard–von Kármán street. Measurements of velocity and temperature have been performed using LDA and cold wire thermometer with a phase reference. Information on the initial evolution of mean, fluctuating velocity and temperature and associated shear-stresses and heat fluxes fields are presented for two locations of the source: ( and 1). The results show that the velocity field in the wake is strongly related to the geometric structure of vortices while the temperature field is controlled by both the time scale of rotation of the vortices and the location of the heated fluid within the vortex street.  相似文献   

18.
The present experimental study aims at developing a method to control the circular cylinder near wake by radial deformation and understand the underlying physics. Using an infra-red camera, we examine the temperature distribution of the near wake center line of a sinusoidal law radially deforming circular cylinder. From these measurements, the near wake is characterized by the length of the recirculation zone, the vortex formation zone length, the temperature fluctuation maximum intensity and the vortex street shedding frequency. For several deformations frequencies, we study the radial deformation influence on the near wake characteristics. It is noted that the wake structure is strongly affected by the deformation frequency. Among other things, we note the recirculation zone length reduction and the vortex formation zone length reduction when the radial vibrations are close to the “Lock-in” fundamental range. It is also noted that the variations of the vortex shedding frequency depend on the deformation frequency.  相似文献   

19.
20.
Fluid-structure interactions resulting from the free vibrations of a two-dimensional elastic cylinder in a cross flow are not well understood. Experimental data pertaining to the interaction behavior is rather scarce, especially that related to the phenomenon of synchronization where the vortex shedding frequency is approximately equal to the natural frequency of the fluid-structure system. The present investigation attempts to examine this problem experimentally using a laser vibrometer to assess the bending displacements and a laser Doppler anemometer to measure the velocities in the wake. Experiments were carried out over a range of reduced velocities. The reduced velocity was first varied by using cylinders of different materials and then by changing the free stream velocity, while maintaining the cylinder diameter constant. A proper choice of materials and reduced velocity allowed the synchronization phenomenon to be investigated. For the range of reduced velocity investigated, the vibration amplitude of the cylinder is finite, even at synchronization, and increases with reduced velocity. The results further show that more than one mode of vibration is excited away from synchronization; however, only the first mode is evident at synchronization. In addition, the near-wake flow behind the elastic cylinder, at three different Reynolds numbers in the sub-critical range, was measured in detail and the data was used to analyse the vibration effects on the mean and turbulence field compared to those measured behind a relatively rigid cylinder at the same Reynolds numbers. It is found that cylinder vibrations have little or no effect on the mean drag and the normalized mean field. However, cylinder vibrations enhance turbulent mixing, thus resulting in a substantial increase in the turbulent intensities. This implies that the large-scale vortical motion is also affected. Nevertheless, turbulence structure in the inertial sub-range is not affected by cylinder vibrations. The slopes of the velocity spectra in this range is still measured to be −5/3 for the freely vibrating cylinders investigated. Received: 20 December 1998/Accepted: 20 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号