首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the tractive performance of a bulldozer running on weak ground in the driven state, the relations between driving force, drawbar pull, sinkage, eccentricity and slip ratio have been analysed together with each energy balance; effective input energy, sinkage deformation energy, slippage energy and drawbar pull energy. It is considered that the thrust is developed not only on the main straight part of the bottom track belt but also on parts of the front idler and rear sprocket, and the compaction resistance is calculated from the amount of slip sinkage. For a given vehicle and soil properties, it is determined that the drawbar pull increases directly with the slip ratio and reaches about 70% of the maximum driving force. The compaction resistance reaches about 13% of the maximum driving force. The sinkage of the rear sprocket, the eccentricity, and the trim angle increase with the increment of slip ratio due to the slip sinkage. These analytical results have been verified experimentally. After determining the optimum slip ratio to obtain a maximum effective tractive power, it is found that a larger optimum drawbar pull at optimum contact pressure could be obtained for a smaller eccentricity of vehicle center of gravity and a larger track length-width ratio under the same contact area.  相似文献   

2.
Performance of a four-wheel drive (4WD) tractor can be optimized by controlling the power distribution between the front and near axles. This paper proposes an automatically controlled hitch system to adjust the vertical force on each axle and thereby control the axle torques. Factors affecting the functional relationship between axle torque ratio and hitch position were examined experimentally using a scale model 4WD tractor. The relationship between axle torque and hitch position was affected by the initial static weight distribution, the vertical and horizontal drawbar loads and traction or soil conditions. Traction efficiency was not affected by the axle torque ratio.  相似文献   

3.
An instrumented drive axle is introduced for a prototype tractor using in field research on tractor and implement performance. This mechanism was developed to determine whether such an instrumented drive axle is practical. The drive axle was equipped with a set of transducers to measure wheel angular velocity, rear axle torque and dynamic weight, as well as tire side forces. Measuring the drawbar pull acting on the tractor provides data for calculating net traction, motion resistance and chassis resistance for each driven wheel.  相似文献   

4.
The desirable weight-to-axle power ratio for agricultural tractors is determined by the necessity for the optimum utilisation of the available axle power to produce the required drawbar pull at a preselected slip. For a vehicle designed to operate in a given speed range, the weight-to-axle power ratio should be within a particular limit, so that a specific level of conversion efficiency can be maintained. In this paper attempts have been made to select suitable tyres for Indian two-wheel drive tractors operating in sandy clay loam soils on the basis of weight-to-power utiisation and maximum pull-to-optimum weight ratio at a preselected slip using the developed traction prediction equations. A comparison has also been made between the desired and actual weight on a single traction wheel and suitable tyre and tyre normally fitted in Indian two wheel drive tractors up to 35 kW.  相似文献   

5.
Use of a datalogger connected to the CAN bus of an 8-wheeled forwarder’s hydrostatic transmission permits measurement of the gross power on the driveline and the rotational velocity of the drive axle. The ground velocity and trajectory of the forwarder is monitored by the GPS technique. These data allow the total resistance force and wheel slip to be determined under different terrain conditions. In this paper the total resistance force is segregated into rolling, slope and winding resistances. The measuring system was tested in practice on an even tarmac surface and a gently sloping hard earth road, the number of input variables in the first tests having been reduced. It was found that the measuring accuracy permitted detection of about a half percent variation in slope inclination in the test lane. Tests on a figure of 8 track showed that the winding resistance can also be detected. It was concluded that the measuring technique is accurate enough for terramechanical research and practicable under real forestry conditions.  相似文献   

6.
This paper investigates the traveling and abrasion characteristics of rigid wheels for a lunar exploration rover at atmospheric pressure and in a vacuum. For this investigation, a traveling test system that enables the wheel to continuously travel over a long distance was developed. Using this system, tests on traveling performance and abrasion were conducted with the wheel on a lunar regolith simulant surface. In the initial tests, various wheels traveled over different ground conditions and their performances were evaluated based on the relationship between the drawbar pull and slippage. In the later tests, a wheel with grousers traveled a distance of 3 km and the abrasion was analyzed at various intervals. From the traveling performance tests, it was found that for a soft ground condition, the traveling performance of the wheels in vacuum was slightly lower than that in atmosphere. This indicates that ground tests performed in atmosphere overestimate the actual performance on the lunar surface. The abrasion tests suggested that the scratching of wheels occurs more easily in vacuum than in atmosphere. These experiments confirmed that the abrasion of the wheels do not cause any critical problem for a traveling distance of up to 3 km in a simulated lunar environment.  相似文献   

7.
Shear stress–displacement model is very important to evaluate the tractive performance of tracked vehicles. A test platform, where track segment shear test and plate load test can be performed in bentonite–water mixture, was built. Through analyzing existing literatures, two shear stress–displacement empirical models were selected to conduct verification tests for seafloor suitability. Test results indicate that the existing models may not be suitable for seafloor soil. To solve this problem, a new empirical model for saturated soft-plastic soil (SSP model) was proposed, and series shearing tests were carried out. Test results indicate that SSP model can describe mechanical behavior of track segment with good approximation in bentonite–water mixture. Through analyzing main external forces applied to test scaled model of seafloor tracked trencher, drawbar pull evaluation functions was deduced with SSP model; and drawbar pull tests were conducted to validate these functions. Test results indicate that drawbar pull evaluation functions was feasible and effective; from another side, this conclusion also proved that SSP model was effective.  相似文献   

8.
A skid steering model using the Magic Formula   总被引:2,自引:0,他引:2  
The paper describes a computer model for predicting the steering performance and power flows of a notional skid steered tracked vehicle. The force/slip characteristics of the rubber track pads are calculated by means of the so-called Magic Formula. Relevant parameters for the Magic Formula are derived from the limited amount of data available from traction tests with a tracked vehicle on a hard surface. The computer model considers the vehicle in steady state motion on curves of various radii and allows for lateral and longitudinal weight transfer, roll and pitch motions and the effects of track tension forces. Vehicle dimensions, Magic Formula parameters and the equations of motion are set up in a Microsoft Excel spreadsheet and solutions obtained using the Solver routine. Model outputs are described in terms of driver control input and various power flows against lateral acceleration. Maximum lateral acceleration is generally limited by the available engine power. In some conditions the outer track sprocket could be transmitting almost twice the maximum net engine power. For vehicles with a single electric motor/inverter driving each sprocket, these units would need to be able to transmit these high intermittent powers.  相似文献   

9.
A substantial number of laboratory and field tests have been conducted to assess performance of various wheel designs in loose soils. However, there is no consolidated database which includes data from several sources. In this study, a consolidated database was created on tests conducted with wheeled vehicles operating in loose dry sand to evaluate existing soil mobility algorithms. The database included wheels of different diameters, widths, heights, and inflation pressures, operating under varying loading conditions. Nine technical reports were identified containing 5253 records, based on existing archives of laboratory and field tests of wheels operating in loose soils. The database structure was assembled to include traction performance parameters such as drawbar pull, torque, traction, motion resistance, sinkage, and wheel slip. Once developed, the database was used to evaluate and support validation of closed form solutions for these variables in the Vehicle Terrain Interface (VTI) model. The correlation between predicted and measured traction performance parameters was evaluated. Comparison of the predicted versus measured performance parameters suggests that the closed form solutions within the VTI model are functional but can be further improved to provide more accurate predictions for off-road vehicle performance.  相似文献   

10.
Agricultural tractors are machines originally designed to mechanize agricultural tasks, especially tillage and pulling. A large part of research activities have been interested in optimizing tractor efficiency, in particular in terms of emissions and energy. In this frame, the OECD Tractor Code 2 sets out a drawbar test in specific controlled conditions with the aim of evaluating the power of the tractor available at the drawbar. The principal measurement chain relies on dynamometric vehicles (DV) that are instrumented vehicles specifically engineered to develop horizontal force at the drawbar of agricultural tractors. The CREA Laboratory of Treviglio, Italy, engineered a new dynamometric vehicle to test tractors with up to 200 kW at the drawbar (245 kW at the engine flywheel) and a maximum of 118 kN drawbar force. The chosen basis is a FIAT 6605 N truck (TM 69 6 × 6) which has been transformed into a hydrostatic vehicle driven by a hydraulic system and an auxiliary gearbox. The maximum drawbar force was verified up to 122 kN. The drawbar power verification (200 kW) was successfully carried. The final verification confirmed that the project is valid for the investigation and optimization of the parameters regarding the traction efficiency of agricultural tractors.  相似文献   

11.
The finite element method [FEM] of analysis previously developed for prediction of rigid wheel-soil interaction is improved and extended to take into account (a) the effect of flexibility of tyre carcass where energy losses now occur in development of mobility, (b) a simpler requirement for specification of boundary condition using input loading, and (c) normal and tangential load stress from the tyre distributed across the tyre-soil interface and varying with slip. The comparisons of analytically computed (predicted) drawbar pull with actual experimentally obtained drawbar pull results for tests in three types of tyres show good correlations. The effect of inflation pressure on development of tyre deformation energy losses can be seen from the analytically computed values.  相似文献   

12.
In this study, we describe a mathematical model designed to allow for the determination of the mechanical relationship existing between soil characteristics and the primary design factors of a tracked vehicle, and to predict the tractive performance of this tracked vehicle on soft terrain. On the basis of the mathematical model, a computer simulation program (Tractive Performance Prediction Model for Tracked Vehicles; TPPMTV) was developed in this study. This model took into account the characteristics of the terrain, including the pressure-sinkage, the shearing characteristics, and the response to the repetitive loading, as well as the primary design parameters of the tracked vehicle. The efficacy of the developed model was then confirmed via comparison of the drawbar pulls of tracked vehicles predicted using the simulation program TPPMTV, with those determined as the result of traction tests. The results indicated that the predicted drawbar pulls, with the change in slip, were quite consistent with the ones measured in the traction test, for the changes in the weight of the vehicle, the initial track tension, and the number of roadwheels within the entire slip range. Thus, we concluded that the simulation program developed in this study, named TPPMTV, proved useful in the prediction of the tractive performance of a tracked vehicle, and that this system might be applicable to the design of a vehicle, possibly enabling a significant improvement in its functions.  相似文献   

13.
This paper presents a numerical analysis on steering performance including tractive parameters and lug effects. To explore the difference between the turning and straight conditions of steering, a numerical sand model for steering is designed and appropriately established by the discrete element method on the basis of triaxial tests. From the point of mean values and variation, steering traction tests are conducted to analyze the tractive parameters including sinkage, torque and drawbar pull and the lug effects resulting from type, intersection and central angle. Analysis indicates that steering motion has less influence on the sinkage and torque. When the slip ratio exceeds 20%, the steering drawbar pull becomes increasingly smaller than in the straight condition, and the increase of steering radius contributes to a decline in mean values and a rise in variation. The lug effect of central angle is less influenced by the steering motion, but the lug intersection is able to significantly increase the steering drawbar pull along with the variation reduced. However, the lug inclination reduces the steering drawbar pull along with the variation raised in different degrees.  相似文献   

14.
Plasticity theory and a general representation of the Mohr failure criterion are applied to the problem of soil-wheel interaction. Load, drawbar pull (or drag), and torque are computed for a rigid wheel being driven on Jones Beach sand. Analytical results obtained from solutions using a conventional Mohr-Coulomb linear failure envelope are compared to those obtained from a non-linear solution. Conclusions are drawn from the comparison that attest the importance of considering the nonlinearity of failure envelopes in certain cases for accuracy of soil-wheel interaction prediction. Preliminary experimental results show reasonable agreement with predicted values of wheel performance parameters.  相似文献   

15.
A new data acquisition system was introduced that could be used to monitor the real time wheel forces to solve the limitations of obtaining precise performance characteristics of actual cage wheels. Contrary to previous methods, in which the cage wheel forces were obtained by summing up the individual lug forces. The new method enables measurement of the components of lug force in three orthogonal directions simultaneously. A single unit dynamometer system, with two extended octagonal rings was designed and fabricated using a solid mild steel block, was able to measure force up to 5 kN in each direction. It was used in a soil-bin test rig to determine the characteristics of the forces produced by a cage wheel with opposing circumferential lugs. The characteristics of the pull and lift forces agreed with measured drawbar pull and calculated wheel forces respectively. The force signals fluctuated periodically with rotation angle and the corresponding period approximately equal to the interval of angular lug spacing. The side force fluctuated between positive and negative values and the average was closer to zero due to the balancing effect of opposing lugs. The new system showed better output compared to the previous attempts, confirming its applicability for accurate measurement of real time wheel forces.  相似文献   

16.
Tractor manufacturers already offer engine - transmission control systems in which the operator decides whether low fuel consumption or high output is the priority and let a control system provide engine and transmission management. Less sophisticated tractors, as well as older equipment, still rely on the operator awareness upon what driving parameters most enhance efficiency. The objective of this study is to analyse the effect of driving parameters, namely forward speed and engine speed on the overall power efficiency. The overall power efficiency of a tractor performing drawbar work is the ratio between the output power at the drawbar and the energy equivalent of the fuel consumed per unity of time. Experimental data obtained from tractor field tests in real farm conditions, within the range of 0.2-0.4 for the vehicle traction ratio (ratio of the drawbar pull to the total weight of the tractor), show that increments of 10-20% on the overall power efficiency can be obtained by throttling down from 2200 min−1 to 1750 min−1 (idle speed). The reduction in ground speed and therefore in the work rate, may be overcome by shifting up the transmission ratio.  相似文献   

17.
This paper proposes an experimental method of predicting the traction performance of a small tracked mobile robot. Firstly, a track-terrain interaction model based on terramechanics is built. Then, an experimental platform of the tracked robot is established, on which the measurement methods of the parameters that influencing the accuracy of the prediction model are introduced and the data post-processing are improved, including drawbar pull, slip ratio, sinkage, track deformation and so on. Based on the experimental data, several key terrain parameters are identified. With the tracked robot platform, the drawbar pull-slip ratio relationship is tested, and the effects on drawbar pull considering different kinds of terrain and the influence of the grousers are analyzed as well. The research results provide a reference for the experimental study on the traction performance of small tracked robots.  相似文献   

18.
In recent years, water disasters have increased in Japan. In water disaster, remote controlled vehicles which work for disaster recovery must run in water environment. Since underwater ground is likely to be soft, the vehicle has a risk of stuck. If a vehicle gets stuck at disaster sites, rescue work is difficult because it is not easily to access to that area. We must make a method for judging whether to run or not. For this purpose, we must quantitatively clarify the relationship between the trafficability and the strength, bearing capacity, etc. of underwater ground. We measured the cone index of underwater ground. From results, we confirmed that fragile layer was formed on the surface layer in underwater ground. We measured drawbar pull of a tracked carrier in test field. As a result, maximum drawbar pull of underwater ground was lower than on the ground. After slip occurs, drawbar pull of underwater ground was smaller than ground significantly.  相似文献   

19.
The Vehicle-Terrain Interface (VTI) model is commonly used to predict off-road mobility to support virtual prototyping. The Database Records for Off-road Vehicle Environments (DROVE), a recently developed database of tests conducted with wheeled vehicles operating on loose, dry sand, is used to calibrate three equations used within the VTI model: drawbar pull, traction, and motion resistance. A two-stage Bayesian calibration process using the Metropolis algorithm is implemented to improve the performance of the three equations through updating of their coefficients. Convergence of the Bayesian calibration process to a calibrated model is established through evaluation of two indicators of convergence. Improvements in root-mean square error (RMSE) are shown for all three equations: 17.7% for drawbar pull, 5.5% for traction, and 23.1% for motion resistance. Improvements are also seen in the coefficient of determination (R2) performance of the equations for drawbar pull, 2.8%, and motion resistance, 2.5%. Improvements are also demonstrated in the coefficient of determination for drawbar pull, 2.8%, and motion resistance, 2.5%, equations, while the calibrated traction equation performs similar to the VTI equation. A randomly selected test dataset of about 10% of the relevant observations from DROVE is used to validate the performance of each calibrated equation.  相似文献   

20.
A 6.71 kW power tiller was evaluated for draft and drawbar power on tar roads. The effect of mounting 40 kg of wheel ballast was also studied. Polynomial regression analysis was used to establish the relationship between draft and wheel slip, drawbar power and wheel slip, drawbar power and fuel consumption, and drawbar power and specific fuel consumption. The results of the study showed draft values of 2107, 2110 and 2110 N in second low, third low and first high gears at an engine speed of 150o rpm with a 15% wheel slip. The respective draft values at engine speed of 2000 rpm with a 15% wheel slip were 2172, 2189 and 2212 N. With the mounting of 40kg wheel ballast there was an increase in draft of 217, 207 and 291 N at 1500 rpm, and 328, 306 and 344 N at 2000 rpm of the engine with a 15% wheel slip in second low, third low and first high gears, respectively. The increase in drawbar power with 40 kg ballast was 10.88%, 7.83% and 20.13% at 1500 rpm and 18.89%, 16.56% and 14.88% at 2000 rpm of engine over the drawbar power available with zero ballast. The fuel consumption with the use of wheel ballast was slightly more than the fuel consumption without any ballast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号