首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the Kaluza-Klein model with a cosmological constant Λ and a flux, the external spacetime of the created universe from aS s × S ns seed instanton can be identified in quantum cosmology. One can also show that in the internal space theeffective cosmological constant is most probably zero.  相似文献   

2.
We study a five dimensional FLRW type Kaluza-Klein cosmological model with static extra dimension. Accelerated expansion is found by assuming a linear relationship p b =mp a between pressures ‘p a ’ corresponding to the usual four dimension, and ‘p b ’ corresponding to the extra dimension. The field equations are obtained and solved, for different values of m, to analyse the cosmological consequences of the present model. It is found that m has the value between 2 and 3 to match with the present observational findings for the accelerated expansion of the universe.  相似文献   

3.
The cosmological constant problem is studied in a two component cosmological model. The universe contains a cosmological constant of an arbitrary size and sign and an additional component with an inhomogeneous equation of state. It is shown that, in a proper parameter regime, the expansion of the universe with a large absolute value of the cosmological constant may asymptotically tend to de Sitter space corresponding to a small effective positive cosmological constant. It is argued that such a behavior can be regarded as a solution of the cosmological constant problem in this model. The mechanism behind the relaxation of the cosmological constant is discussed. A connection with modified gravity theories is discussed and an example of a possible realization of the cosmological constant relaxation in f(R) modified gravity is described.  相似文献   

4.

Using a D = 1 supergravity framework I construct a super-Friedmann equation for an isotropic and homogenous universe including dynamical scalar fields. In the context of quantum theory this becomes an equation for a wave function of the universe of spinorial type, the Wheeler–DeWitt–Dirac equation. It is argued that a cosmological constant breaks a certain chiral symmetry of this equation, a symmetry in the Hilbert space of universe states, which could protect a small cosmological constant from being affected by large quantum corrections.

  相似文献   

5.
The field equations of Kaluza-Klein (KK) theory have been applied in the domain of cosmology. These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t. We use Taylor's expansion of cosmological function, Λ(t), up to the first order of the time t. The cosmological parameters are calculated and some cosmological problems are discussed.  相似文献   

6.
We have investigated Bianchi type-IX dust filled universe for ideal fluid distribution in creation field in which creation field is a function of time t only. To get deterministic cosmological model, we have assumed a supplementary condition a = b n , where a and b are metric potential and n is constant. Also, we have study the physical and geometrical parameters of the said cosmological model.  相似文献   

7.
As an alternative to dark energy that explains the observed acceleration of the universe, it has been suggested that we may be at the center of an inhomogeneous isotropic universe described by a Lemaitre–Tolman–Bondi (LTB) solution of Einstein’s field equations. To test this possibility, it is necessary to solve the null geodesics. In this paper we first give a detailed derivation of a fully analytical set of differential equations for the radial null geodesics as functions of the redshift in LTB models. As an application we use these equaions to show that a positive averaged acceleration a D obtained in LTB models through spatial averaging can be incompatible with cosmological observations. We provide examples of LTB models with positive a D which fail to reproduce the observed luminosity distance D L (z). Since the apparent cosmic acceleration a FLRW is obtained from fitting the observed luminosity distance to a FLRW model we conclude that in general a positive a D in LTB models does not imply a positive a FLRW .  相似文献   

8.
In a recent paper, O. Costa de Beauregard shows that Mach's conjecture can be expressed by the equation U=c 2 (U denoting the cosmological potential). This result leads us to a geometrical interpretation of Einstein's constant c (the so-called velocity of light) which appears as intimately connected to the expansion of the universe. We also present some cosmological consequences of that interpretation for the horizon problem, for the problem of the homogeneity of the cosmic background radiation, and for the problem of the flatness of the universe.  相似文献   

9.
Varun Sahni 《Pramana》2000,55(1-2):43-52
I present a short overview of current observational results and theoretical models for a cosmological constant. The main motivation for invoking a small cosmological constant (or A-term) at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest an accelerating universe. A flat accelerating universe is strongly favoured by combining supernovae observations with observations of CMB anisotropies on degree scales which give the ‘best-fit’ values ΘA ⋍ 0.7 and Θ m ⋍ 0.3. A time dependent cosmological A-term can be generated by scalar field models with exponential and power law potentials. Some of these models can alleviate the ‘fine tuning’ problem which faces the cosmological constant.  相似文献   

10.
In this paper, we investigate dynamics of the modified loop quantum cosmology models using dynamical systems methods. Modifications considered come from the choice of the different field strength operator and result in different forms of the effective Hamiltonian. Such an ambiguity of the choice of this expression from some class of functions is allowed in the framework of loop quantization. Our main goal is to show how such modifications can influence the bouncing universe scenario in the loop quantum cosmology. In effective models considered we classify all evolutional paths for all admissible initial conditions. The dynamics is reduced to the form of a dynamical system of the Newtonian type on a two-dimensional phase plane. These models are equivalent dynamically to the FRW models with the decaying effective cosmological term parameterized by the canonical variable p (or by the scale factor a). We demonstrate that the evolutional scenario depends on the geometrical constant parameter Λ as well as the model parameter n. We find that for the positive cosmological constant there is a class of oscillating models without the initial and final singularities. The new phenomenon is the appearance of curvature singularities for the finite values of the scale factor, but we find that for the positive cosmological constant these singularities can be avoided. The values of the parameter n and the cosmological constant differentiate asymptotic states of the evolution. For the positive cosmological constant the evolution begins at the asymptotic state in the past represented by the de Sitter contracting (deS) spacetime or the static Einstein universe H = 0 or H =  − ∞ state and reaches the de Sitter expanding state (deS+), the state H = 0 or H =  + ∞ state. In the case of the negative cosmological constant we obtain the past and future asymptotic states as the Einstein static universes.  相似文献   

11.
The present paper envisages a spatially homogeneous and anisotropic Bianchi II massive string cosmological models with time-decaying Λ term in general relativity. By using the variation law of Hubble’s parameter, the Einstein’s field equations have been solved for two general cases. The first case involving a power law solution describes the dynamics of universe from big bang to present epoch while the second case admit an exponential solution seems reasonable to project dynamics of future universe. We observed that massive strings dominate in early universe and eventually disappear at late time, which is consistent with the current astronomical observations. It has been found that the cosmological constant (Λ) is a decreasing function of time and it approaches to small positive value at sufficiently large time. The thermodynamic properties of anisotropic Bianchi II universe are studied and also the absolute temperature and entropy distribution are given explicitly. The relations between thermodynamic parameters and cosmological constant Λ has been established. Physical behavior of the derived model is elaborated in detail.  相似文献   

12.
We make the cosmological constant, Λ, into a field and restrict the variations of the action with respect to it by causality. This creates an additional Einstein constraint equation. It restricts the solutions of the standard Einstein equations and is the requirement that the cosmological wave function possess a classical limit. When applied to the Friedmann metric it requires that the cosmological constant measured today, t U , be L ~ tU-2 ~ 10-122{\Lambda \sim t_{U}^{-2} \sim 10^{-122}} , as observed. This is the classical value of Λ that dominates the wave function of the universe. Our new field equation determines Λ in terms of other astronomically measurable quantities. Specifically, it predicts that the spatial curvature parameter of the universe is Wk0 o -k/a02H2=-0.0055{\Omega _{\mathrm{k0}} \equiv -k/a_{0}^{2}H^{2}=-0.0055} , which will be tested by Planck Satellite data. Our theory also creates a new picture of self-consistent quantum cosmological history.  相似文献   

13.
The Wheeler-DeWitt equation is applied to closedk>0 Friedmann-Robertson-Walker metric with various combination of cosmological constant and matter (e.g., radiation or pressureless gas). It is shown that if the universe ends in the matter dominated era (e.g., radiation or pressureless gas) with zero cosmological constant, then the resulting Wheeler-DeWitt equation describes a bound state problem. As solutions of a nondegenerate bound state system, the eigen-wave functions are real (Hartle-Hawking). Furthermore, as a bound state problem, there exists a quantization condition that relates the curvature of the three space with the various energy densities of the universe. If we assume that our universe is closed, then the quantum number of our universe isN(Gk)–110122. The largeness of this quantum number is naturally explained by an early inflationary phase which resulted in a flat universe we observe today. It is also shown that if there is a cosmological constant >0 in our universe that persists for all time, then the resulting Wheeler-DeWitt equation describes a non-bound state system, regardless of the magnitude of the cosmological constant. As a consequence, the wave functions are in general complex (Vilenkin).  相似文献   

14.
We investigate f (R)-gravity models performing the ADM-slicing of standard General Relativity. We extract the static, spherically-symmetric vacuum solutions in the general case, which correspond to either Schwarzschild de-Sitter or Schwarzschild anti-de-Sitter ones. Additionally, we study the cosmological evolution of a homogeneous and isotropic universe, which is governed by an algebraic and not a differential equation. We show that the universe admits solutions corresponding to acceleration at late cosmological epochs, without the need of fine-tuning the model-parameters or the initial conditions.  相似文献   

15.
We have considered a cosmological model of the FRW universe with variable G and Λ. The solutions have been obtained for flat model with particular form of cosmological constant. The cosmological parameters have also been obtained for dust, radiation and stiff matter. The statefinder parameters are analyzed and have shown that these depends only on w and ε. Further the lookback time, proper distance, luminosity distance and angular diameter distance have also been calculated for our model.  相似文献   

16.
17.
Considering a Robertson-Walker line element, exact solutions are obtained for radiation-filled cosmological differential equations of Brans-Dicke theory with the assumption that the radius of curvatureQ of the universe varies directly as thenth power of time. The solution is found to be valid for closed space only and the coupling constantw of the scalar tensor theory is necessarily negative. The radius of curvature of increases linearly with respect to the age of the universe, while the gravitational constantk varies directly as the square of the radius of the universe. The solution obtained is in contradiction to Dirac's hypothesis, in which the gravitational constant should decrease with time in an expanding universe.  相似文献   

18.
The formation of black holes in the quantum cosmology scheme has been discussed by means of calculating the wave function of the universe with a black hole, which is described by a Schwarzschild-de Sitter metric. The average radius of the Schwarzschild black holes formed in the process of the birth of the universe is shown to be about lp6H2/a3, where lp is the Planck length; ∧=3H2 is the cosmological constant; a is the radius of the universe when it enters into the classical era.  相似文献   

19.
In the present paper, we investigate the possibility of a variation law for Hubble’s parameter H in the background of spatially homogeneous, anisotropic Bianchi type V space-time with perfect fluid source and time-dependent cosmological term. The model obtained presents a cosmological scenario which describes an early deceleration and late time acceleration. The model approaches isotropy and tends to a de Sitter universe at late times. The cosmological term Λ asymptotically tends to a genuine cosmological constant. It is observed that the solution is consistent with the results of recent observations.  相似文献   

20.
The field equations with variable cosmological and gravitational constants are consider in the presence of perfect fluid for Kaluza-Klein type cosmological model. The exact solutions of the field equations are obtained by using the gamma law equation of state p=(γ−1)ρ in which the parameter γ depends on scale factor R. The functional form of γ(R) is used to analyze a wide range of cosmological solution at early universe for two phases in cosmic history: inflationary phase and radiation dominated phase. The corresponding physical interpretation of cosmological solution are also discussed in the framework of higher dimensional space time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号