首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a single platform of a triple-quadrupole mass spectrometer equipped with enhanced resolution and accurate mass capabilities, a strategy for metabolite identification of a drug in a biological matrix has been demonstrated. The strategy is based on first screening for metabolites via neutral loss and precursor ion scan schemes, devised as the result of the product ion spectrum of a matrix-free standard of the drug. The accurate masses of the precursor ions identified via the two scan schemes plus the precursor ions of structurally likely metabolites are then determined by enhanced resolution, accurate mass (AM) selected ion monitoring (SIM). The identities of the metabolites are further established by determining the accurate masses of the product ions via enhanced resolution AM selected reaction monitoring (SRM). The feasibility of the strategy was demonstrated using a liver microsome incubation sample of nefazodone, an antidepressant drug. The neutral loss and precursor ion screening runs were able to identify most of the metabolites of nefazodone. The subsequent SIM and SRM experiments gave mass accuracy of better than +/-0.003 u for the masses of the precursor and product ions of nefazodone and all the metabolites. The ability to perform metabolite screening by using the scan features followed by accurate mass determinations on the same instrument is an attractive feature of using a triple-quadrupole mass spectrometer with enhanced resolution and accurate mass capability.  相似文献   

2.
Searchable libraries of MS/MS spectra, obtained using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with data-dependent scan mode switching on both quadrupole ion trap and triple-quadrupole mass spectrometers in conjunction with electrospray ionization, are presented. The effects on library search scores of changing the parameters for producing collision-induced dissociation (CID) on both instrument types are systematically evaluated. These observations serve as a basis for determining a universal set of conditions for building MS/MS libraries. A group of 19 closely related steroids was used. The ability to obtain library-searchable spectra at low concentrations is demonstrated for the analysis of a sample of progesterone spiked with hydroxyprogesterone impurities at 0.1 and 0.01%.  相似文献   

3.
4.
A small on-line computer system for complete processing of low resolution magnetic deflection mass spectrometric data has been demonstrated. An interpolated mass scale accuracy of 200ppm was achieved for both repetitive (five or ten second cycle times) and single scan modes. Identification of m/e values above 1000 is possible with an accuracy of 500 ppm to m/e 3600. Mass scale assignments are time based and externally calibrated (pfa).  相似文献   

5.
Quantitative analysis of pharmaceuticals with low systemic plasma levels requires the utmost in sensitivity and selectivity from the analytical method used. A recently introduced triple-quadrupole mass spectrometer with unique enhanced mass-resolution capability was evaluated in the analysis of two such drugs, cabergoline and pergolide, in plasma. Liquid chromatographic/electrospray ionization selected reaction monitoring determination of cabergoline in plasma at unit mass-resolution demonstrated improved sensitivity (50 fg on-column), coupled with suitable accuracy and precision over a broad linear dynamic range covering five orders of magnitude (50 fg to 5 ng on-column). Liquid chromatographic/atmospheric pressure chemical ionization selective reaction monitoring determination of pergolide in plasma also attained a high level of sensitivity (500 fg on-column) at unit mass-resolution, with accuracy and precision values well within pharmaceutical industry standards. Again, a linear dynamic range covering five orders of magnitude (500 fg to 50 ng on-column) was achieved for the assay. Utility of the enhanced mass-resolution feature of the triple-quadrupole mass spectrometer in the determination of pergolide resulted in an improvement in analyte sensitivity (250 fg on-column) and linear dynamic range (250 fg to 50 ng on-column).  相似文献   

6.
Tan L  Li Y  Drake TJ  Moroz L  Wang K  Li J  Munteanu A  Chaoyong JY  Martinez K  Tan W 《The Analyst》2005,130(7):1002-1005
Molecular beacons (MBs) are hairpin-shaped oligonucleotides that contain both fluorophore and quencher moieties. They act like switches and are normally in a closed state, when the fluorophore and the quencher are brought together to turn "off" the fluorescence. When prompted to undergo conformational changes that open the hairpin structure, the fluorophore and the quencher are separated, and fluorescence is turned "on." This Education will outline the principles of MBs and discuss recent bioanalytical applications of these probes for in vitro RNA and DNA monitoring, biosensors and biochips, real-time monitoring of genes and gene expression in living systems, as well as the next generation of MBs for studies on proteins, the MB aptamers. These important applications have shown that MBs hold great potential in genomics and proteomics where real-time molecular recognition with high sensitivity and excellent specificity is critical.  相似文献   

7.
Mass spectrometers that use different types of analyzers for the first and second stages of mass analysis in tandem mass spectrometry (MS/MS) experiments are often referred to as "hybrid" mass spectrometers. The general goal in the design of a hybrid instrument is to combine different performance characteristics offered by various types of analyzers into one mass spectrometer. These performance characteristics may include mass resolving power, the ion kinetic energy for collision-induced dissociation, and speed of analysis. This paper provides a review of the development of hybrid instruments over the last 30 years for analytical applications.  相似文献   

8.
9.
10.
Enzyme-functionalized mesoporous silica for bioanalytical applications   总被引:1,自引:0,他引:1  
The unique properties of mesoporous silica materials (MPs) have attracted substantial interest for use as enzyme-immobilization matrices. These features include high surface area, chemical, thermal, and mechanical stability, highly uniform pore distribution and tunable pore size, high adsorption capacity, and an ordered porous network for free diffusion of substrates and reaction products. Research demonstrated that enzymes encapsulated or entrapped in MPs retain their biocatalytic activity and are more stable than enzymes in solution. This review discusses recent advances in the study and use of mesoporous silica for enzyme immobilization and application in biosensor technology. Different types of MPs, their morphological and structural characteristics, and strategies used for their functionalization with enzymes are discussed. Finally, prospective and potential benefits of these materials for bioanalytical applications and biosensor technology are also presented. Figure Enzyme-functionalized mesoporous silica fibers and their integration in a biosensor design. The immobilization process takes place essentially in the silica micropores.  相似文献   

11.
With recent advances in nanotechnology making more easily available the novel chemical and physical properties of metal nanoparticles (NPs), these have become extremely suitable for creating new sensing assays. Many kinds of NPs, including metal, metal-oxide, semiconductor and even composite-metal NPs, have been used for constructing electrochemical sensors. This article reviews the progress of NP-based electrochemical detection in recent applications, especially in bioanalysis, and summarizes the main functions of NPs in conventional and miniaturized systems. All references cited here generally show one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous-detection capabilities.  相似文献   

12.
Increased demand for assays for compounds at the early stages of drug discovery within the pharmaceutical industry has led to the need for open-access mass spectrometry systems for performing quantitative analysis in a variety of biological matrices. The open-access mass spectrometers described here are LC/MS/MS systems operated in 'multiple reaction monitoring' (MRM) mode to obtain the sensitivity and specificity required to quantitate low levels of pharmaceutical compounds in an excess of biological matrix. Instigation of these open-access systems has resulted in mass spectrometers becoming the detectors of choice for non-expert users, drastically reducing analytical method development time and allowing drug discovery scientists to concentrate on their core expertise of pharmacokinetics and drug metabolism. Setting up an open-access facility that effectively allows a user with minimal mass spectral knowledge to exploit the MS/MS capability of triple quadrupole mass spectrometers presents a significantly different challenge from setting up qualitative single stage mass spectrometry systems. Evolution of quantitative open access mass spectrometry within a pharmaceutical drug metabolism and pharmacokinetics group, from its beginnings as a single generic system to a series of specialist fully integrated walk-up facilities, is described.  相似文献   

13.
Reproducibility of product ion spectra acquired using a liquid chromatography/triple-quadrupole mass spectrometry (LC/MS/MS) instrument over a 4-year period, and with three other LC/MS/MS instruments, one from the same manufacturer and two from a different manufacturer, was examined. The MS/MS spectra of 30 drug substances were generated in positive electrospray ionization mode at low, medium, and high collision energies (20, 35, and 50 eV). Purity and Fit score percentages against a 400-compound LC/MS/MS spectral library were calculated using an algorithm in which fragment intensity ratios and weighting factors were included. The long-term reproducibility study was conducted using a brand A instrument; after 4 years the reproducibility of the product ion spectra was still 94%, expressed as average Purity score. The inter-laboratory study involved two parts. Firstly, two LC/MS/MS spectral libraries, created independently in separate laboratories using brand A instruments, were compared with each other. The average Fit and Purity scores of spectra from one library against the other were better than 93 and 91%, respectively, when the same collision energies were used. Secondly, for the comparison of product ion spectra between brand A and brand B instruments, fragmentation conditions were first standardized for amitriptyline as the standard analyte. The average Fit scores of brand B spectra against the brand A spectral library varied between 79 and 85% at all three collision energies. These results indicate that, after standardizing the instrumental conditions, LC/MS/MS spectral libraries of drug substances are suitable for inter-laboratory use.  相似文献   

14.
Nanomaterials have emerging importance in laser desorption ionization mass spectrometry (LDI–MS) with the ultimate objective being to overcome some of the most important limitations intrinsically related to the use of conventional organic matrices in matrix-assisted (MA) LDI–MS. This review provides a critical overview of the most recent literature on the use of gold nanomaterials as non-conventional desorption ionization promoters in LDI–MS, with particular emphasis on bioanalytical applications. Old seminal papers will also be discussed to provide a timeline of the most significant achievements in the field. Future prospects and research needs are also briefly discussed.  相似文献   

15.
For a single peak, mass spectral resolution can be expressed in terms of peak width or ratio of peak position to peak width. Alternatively, for two equally intense peaks of equal width, resolution can be defined as the minimum peak separation such that the height of the valley between the combined peaks is less than a specified ratio (1%, 10%, 50%, 100%) of the individual (or combined) peak maximum. All these definitions depend on peak shape. Conversion formulae between various mass resolution criteria are presented for each of eight spectral peak shapes: Gaussian, triangular, trapezoidal, Lorentzian (absorption-mode, magnitude-mode, and sine-apodized magnitude-mode), and sinc (absorption-mode and magnitude-mode). From these formulae, mass resolutions based upon different criteria are readily compared for the same or different line shapes.  相似文献   

16.
This article reviews and highlights the current development of DNA-based bioanalytical microsystems for point-of-care diagnostics and on-site monitoring of food and water. Recent progresses in the miniaturization of various biological processing steps for the sample preparation, DNA amplification (polymerase chain reaction), and product detection are delineated in detail. Product detection approaches utilizing “portable” detection signals and electrochemistry-based methods are emphasized in this work. The strategies and challenges for the integration of individual processing module on the same chip are discussed.  相似文献   

17.
In order to increase sample analysis throughput, the use of fast liquid chromatography in quantitative bioanalysis based on liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) has become prevalent. Therefore, it is important to increase the specificity of such bioanalytical methods. This can be done by enhancing both the chromatographic and mass resolving power. Increasing the mass spectrometric resolving power to minimize interference from endogenous compounds in the biological matrix is the subject of this paper. We present the results of our experience with developing and validating SRM-based, enhanced resolution bioanalytical methods using a new triple-quadrupole mass spectrometer with enhanced resolution capability. We have shown that SRM bioanalytical methods using better than unit-mass resolution (Q1 FWHM = 0.2 Th, Q3 FWHM = 0.7 Th) can be developed which are as rugged as unit resolution methods (Q1 FWHM = 0.7 Th, Q3 FWHM = 0.7 Th). The enhanced resolution methods require more attention to detail than unit resolution methods. For instance, the mass setting for precursor ion selection is more critical because the mass peak is narrower. Because of this, enhanced resolution methods may be more easily influenced by temperature changes in the laboratory. We have shown that there is good correlation between the shift in the precursor ion mass and the ambient temperature. Other studies carried out to investigate the effects on mass peak shape and response (both in the SIM and SRM mode) as the result of varying the FWHM revealed some interesting results. For instance, the decrease in response with the decrease in the FWHM was larger using SRM compared to that using SIM. However, the decrease in both SRM and SIM response with decreasing FWHM was significantly smaller compared with the decrease obtained using an older generation instrument. We demonstrate that, at concentrations near the limit of detection, the signal specificity can be improved by using an enhanced resolution method. To compare the performance of an enhanced resolution method against a unit resolution method under optimized mass spectrometric conditions, we analyzed calibration standards and quality control samples using a lower limit of quantitation that could be easily achieved by either method. Under these conditions, the two methods were essentially the same, demonstrating that the enhanced resolution method is as accurate, precise and rugged as the unit resolution method. We propose system suitability procedures, based on precursor ion scan, product ion scan, SRM with fractional mass changes, or SIM with a narrow scan width, for the updating of the SRM set masses before the start of analysis. We also recommend that Q1 SRM masses be determined during and at the end of analysis in order to ascertain whether or not the precursor masses have shifted during the course of the analysis.  相似文献   

18.
Genetically engineered bacteria-based sensing systems have been employed in a variety of analyses because of their selectivity, sensitivity, and ease of use. These systems, however, have found limited applications in the field because of the inability of bacteria to survive long term, especially under extreme environmental conditions. In nature, certain bacteria, such as those from Clostridium and Bacillus genera, when exposed to threatening environmental conditions are capable of cocooning themselves into a vegetative state known as spores. To overcome the aforementioned limitation of bacterial sensing systems, the use of microorganisms capable of sporulation has recently been proposed. The ability of spores to endow bacteria-based sensing systems with long lives, along with their ability to cycle between the vegetative spore state and the germinated living cell, contributes to their attractiveness as vehicles for cell-based biosensors. An additional application where spores have shown promise is in surface display systems. In that regard, spores expressing certain enzymes, proteins, or peptides on their surface have been presented as a stable, simple, and safe new tool for the biospecific recognition of target analytes, the biocatalytic production of chemicals, and the delivery of biomolecules of pharmaceutical relevance. This review focuses on the application of spores as a packaging method for whole-cell biosensors, surface display of recombinant proteins on spores for bioanalytical and biotechnological applications, and the use of spores as vehicles for vaccines and therapeutic agents.  相似文献   

19.
Analytical and bioanalytical applications of carbon dots   总被引:1,自引:0,他引:1  
Carbon dots (CDs) comprise a recently discovered class of strongly fluorescent, emission-color-tuning and non-blinking nanoparticles with great analytical and bioanalytical potential. Raw CDs can be obtained by laser ablation or electrochemical exfoliation of graphite, from soot, or thermal carbonization, acid dehydration or ultrasonic treatment of molecular precursors. Passivation of raw CDs makes them fluorescent and their functionalization confers reactivity towards selected targets. CDs can be excited by single-photon (ultraviolet or near-ultraviolet) and multi-photon (red or near-infrared) excitation, and their luminescence properties are due to surface defects. CDs are being proposed as bioimaging probes because they comprise non-toxic elements and are biocompatible. Passivated and functionalized CDs can be made to sense pH, metal ions and molecular substances.  相似文献   

20.
Lin SL  Bai HY  Lin TY  Fuh MR 《Electrophoresis》2012,33(4):635-643
The development and integration of microfabricated liquid chromatography (LC) microchips have increased dramatically in the last decade due to the needs of enhanced sensitivity and rapid analysis as well as the rising concern on reducing environmental impacts of chemicals used in various types of chemical and biochemical analyses. Recent development of microfluidic chip-based LC mass spectrometry (chip-based LC-MS) has played an important role in proteomic research for high throughput analysis. To date, the use of chip-based LC-MS for determination of small molecules, such as biomarkers, active pharmaceutical ingredients (APIs), and drugs of abuse and their metabolites, in clinical and pharmaceutical applications has not been thoroughly investigated. This mini-review summarizes the utilization of commercial chip-based LC-MS systems for determination of small molecules in bioanalytical applications, including drug metabolites and disease/tumor-associated biomarkers in clinical samples as well as adsorption, distribution, metabolism, and excretion studies of APIs in drug discovery and development. The different types of commercial chip-based interfaces for LC-MS analysis are discussed first and followed by applications of chip-based LC-MS on biological samples as well as the comparison with other LC-MS techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号