首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic system methylaluminoxane (MAO) and bis(n-butylcyclopentadienyl)zirconium dichloride ((nBuCp)2ZrCl2) was immobilized on commercial silica, silica-alumina and aluminophosphate calcined at different temperatures. The properties of the supports were determined by using N2 adsorption-desorption isotherms at 77 K, FT-IR spectroscopy and SEM. After aluminium and zirconium impregnation, the catalysts were analyzed by ICP-AES, FT-IR and UV-vis spectroscopy. Ethylene polymerizations were carried out in a Schlenk tube at 70 °C and 1.2 bar of ethylene pressure. The polyethylene obtained was characterized by GPC, DSC and SEM.Catalysts supported on silica-alumina exhibited higher polymerization activity than those supported on silica and aluminophosphate. Besides, the activity of MAO/(nBuCp)2ZrCl2 catalytic system supported on silica-alumina and aluminophosphate decreased strongly with support calcination temperature, while remained almost constant when silica was employed as support. All these experimental features suggest a role of the support acid properties and hydroxyl group population in the generation of active polymerization species.  相似文献   

2.
Effect of SiCl4-modified silica/MAO-supported Et[Ind]2ZrCl2 metallocene catalyst on copolymerization of ethylene with -olefins was investigated. Effect of SiCl4 on activities was diminished with higher -olefins. Molecular weights of copolymers decreased with SiCl4 modification. SiCl4 modification also resulted in a lower molecular weight distribution. 13C NMR showed that ethylene incorporation in all systems gave copolymers with similar triad distribution. In addition, a narrow branching distribution can be achieved with SiCl4 modification.  相似文献   

3.
Propylene polymerization and propylene/1-octene copolymerization were studied using rac-Me2SiInd2ZrCl2(1)/MAO or rac-Me2SiInd2ZrCl2/(MAO + TIBA) as catalyst (methyl aluminoxane, MAO; AliBu3, TIBA). The structure distribution of the polymers was characterized by temperature gradient extraction fractionation or precipitation fractionation, as well as by DSC analysis of the thermal segregated samples. By comparing the structure distribution of polypropylene and propylene-1-octene copolymer synthesized by 1/MAO and 1/(MAO + TIBA), it is found that adding TIBA in the catalyst system increase the blockiness of the polymer chain, especially in the copolymerization system. It is assumed that, when iso-butyl is incorporated in the aluminoxane, ion pair of the active center and the aluminoxane counter ion may exist in different states that show different catalytic behaviors, resulting in the formation of polymers with block structure.  相似文献   

4.
Ligand effects on the catalytic activity [and norbornene (NBE) incorporation] for both ethylene polymerization and ethylene/NBE copolymerization using half-titanocenes (titanium half-sandwich complexes) containing ketimide ligand of type Cp′TiCl2[NC(R1)R2] [Cp′ = Cp (1), C5Me5 (Cp, 2); R1,R2 = tBu,tBu (a), tBu,Ph (b), Ph,Ph (c)]-methylaluminoxane (MAO) catalyst systems have been investigated. CpTiCl2[NC(tBu)Ph] (1b) CpTiCl2(NCPh2) (1c), and CpTiCl2(NCPh2) (2c) were prepared and identified; the structure of CpTiCl2(NCPh2) (2c) was determined by X-ray crystallography. The catalytic activity for ethylene polymerization increased in the order: 1a > 1b > 1c, suggesting that an electronic nature of the ketimide ligand affects the activity. However, molecular weight distributions for resultant (co)polymers prepared by 1b,c and by 2c-MAO catalyst systems were bi- or multi-modal, suggesting that the ketimide substituent plays a key role in order for these (co)polymerizations to proceed with single catalytically-active species. CpTiCl2(NCtBu2) (1a) exhibited both remarkable catalytic activity and efficient NBE incorporation for ethylene/NBE copolymerization.  相似文献   

5.
An improved synthesis of 2,2′-bis(1-indenyl)propane and the corresponding ansa-complexes of zirconium are reported. Synthesis of a mixture of rac- and meso-2,2′-propylidene-bis(1-indenyl)zirconium dichlorides involves a treatment of ZrCl4 with bis[3-(trialkyltin)inden-1-yl]propane, where alkyl = ethyl, butyl, in toluene. This reaction gives the products in 92% yield and might be a convenient synthetic pathway to a number of straightforward ansa-metallocenes. Both rac- and meso-2,2′-propylidene-bis(1-indenyl)zirconium dichlorides were separated and isolated using simple work-up processes, and characterized by X-ray crystal structure analysis (rac:C2/c; a = 15.903(3) Å, b = 11.105(2) Å and c = 11.520(2) Å; β = 121.61(3)°; Z = 4; V = 1732.6(5) Å3; R = 0.0350; meso-: P1¯; a = 9.739(2) Å, b = 12.798(4) Å and c = 15.322(4) Å; = 101.18(2)°; β = 121.61(2)°; γ = 90.54(2)°, Z = 4; V = 1795.4(8) Å3; R = 0.0417).  相似文献   

6.
The reactions of lanthanide tris(borohydrides) Ln(BH4)3(thf)3 (Ln = Sm or Nd) with 2 equiv. of lithium N,N′-diisopropyl-N′-bis(trimethylsilyl)guanidinate in toluene produced the [(Me3Si)2NC(NPri)2]Ln(BH4)2Li(thf)2 complexes (Ln = Sm or Nd), which were isolated in 57 and 42% yields, respectively, by recrystallization from hexane. X-ray diffraction experiments and NMR and IR spectroscopic studies demonstrated that the reactions afford monomeric ate complexes, in which the lanthanide and lithium atoms are linked to each other by two bridging borohydride groups. The complexes exhibit catalytic activity in polymerization of methyl methacrylate. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 441–445, March, 2007.  相似文献   

7.
(C5Me5)2Sm(THF)2 reacts with 1,2-epoxybutane in toluene to form, in addition to the toluene soluble [(C5 Me5)2Sm]2(μ-O), 1, the hexane soluble [(C5Me5)2Sm(THF)]2(μ-O), 2. In hexane, 2 loses THF to form 1 as a precipitate, but 1 cannot be converted to 2 by addition of THF at room temperature. Compound 1 does convert to 2 in low yield in THF at reflux. The reaction of (C5Me5)2SM(phthalan) with 1,2-epoxybutane generates 1 and a phthalan analog of 2, [(C5Me5)2Sm(phthalan)]2(μ,-O), 3. Compound 2 reacts with Me3CCN to form [(C5Me5)2Sm(NCCMe3)]2(μ-O), 4, by displacement of THF.  相似文献   

8.
9.
The finding that compounds of the type (Me3Si)2(PhMe2Si)CSiMePhX react with electrophiles to give very predominantly rearranged products (Me3Si)2(Ph2MeSi)CSiMe2Y, which would be expected to be thermodynamically disfavoured, can be rationalized in terms of a mechanism in which the anchimerically-assisted departure of X gives the Ph-bridged cation [(Me3Si)2

MePh]+ which is attacked by the nucleophile at the less hindered centre bearing two Me groups rather than that bearing one Me and one Ph group, with the outcome determined by kinetic rather than thermodynamic factors. Both (Me3Si)2(Ph2MeSi)CSiMe2Br and its isomer (Me3Si)2(PhMe2Si)CSiMePhBr react with AgBF4 in CH2Cl2 or Et2O to give >95% of the fluoride (Me3Si)2(Ph2MeSi)CSiMe2F. Reaction of the bromide (Me3Si)2(PhMe2Si)CSiMePhBr with AgO2CCF3 in Et2O, and that of the hydride (Me3Si)2(PhMe2Si)CSiMePhH with ICl in CCl4, likewise give >95% of the rearranged (Me3Si)2(Ph2MeSi)CSiMe2O2CCF3 and (Me3Si)2(Ph2MeSi)CSiMe2Cl, respectively.  相似文献   

10.
Four titanium complexes derived from 2-(2-ethylanilino)-, 2-(3,5-dimethylanilino)pyridine, 2-(4-n-butylanilino)- and 2-(2-t-butylanilino)pyridine were synthesized and characterized by spectroscopic methods. These complexes were used to catalyze the polymerization of ethylene in the presence of MAO as cocatalyst. The effect of the complex structures on the polymerization behavior was studied. All the alkylphenylaminopyridinato titanium complexes used in this study yielded higher molar masses than the unsubstituted bis(phenylaminopyridinato) titanium dichloride complex. Correspondingly, activities were lower and molar mass distributions were broader than those in the case of the unsubstituted bis(phenylaminopyridinato) titanium catalyst. The fluxional behavior of alkylphenylaminopyridinato titanium catalysts is probably the reason for the broad molar mass distributions. This might be due to the electron-donating effect from the alkyl substituent because the alkyl substituent enhances the active site isomerization rate.  相似文献   

11.
A new zirconocene ansa-Me2Si-(2Me-4-p-Tol-cyclopenta[b]indol-3-yl)2ZrCl2 complex (I), in which the Cp ligand is fused with the indole ring, has been synthesized and studied by X-ray diffraction analysis. Light brown crystals are triclinic, space group P [`1]\bar 1; M = 734.92, a = 9.252(2) ?, b = 12.914(3) ?, c = 15.619(3) ?, α = 111.83(3)°, β = 81.03(3)°, γ = 117.77(3)°, V = 1569(3) ?3, Z = 2, ρcalc = 1.525 g/cm3. The structural parameters of complex I are compared with the known bis-indenyl zirconium complexes: rac-Me2Si(Ind)2ZrCl2 (II) and rac-Me2Si(2Me-2Ph-1-Ind)2ZrCl2 (III) and analogous substituted rac-Me2Si(2,5-Me2-3Ph-6-Cp[b]Tp)2ZrCl2 (IV) and rac-Me2Si(2,5-Me2-1Ph-4-Cp[b]Py)2ZrCl2 (V). Complex I alkylated by the Grignard reagent (MgMe2) in the presence of the Al-iso-Bu3 cocatalyst is an efficient catalyst for the polymerization of propylene into isotactic polypropylene.  相似文献   

12.
Copolymerization of ethylene/1-octene was carried out in toluene withvarious concentrations of comonomer in the feed using Et(Ind)_2ZrCl_2/MAO (methyl alu-minoxane) as catalyst. It was found that with the increase of 1-octene concentration in thefeed the content of 1-octene in the copolymer increases, while the density, melting point,crystallinity and intrinsic viscosity of copolymer decrease. A copolymer with very lowdensity, containing 11.5 mol% of 1-octene (VLLDPE) can be produced with this catalystsystem. The effect of temperature and zirconium aluminum mole ratio of the catalyst onthe copolymerization was also investigated. The results of ~(13)C NMR determination of thecopolymer showed that the 1-octene units in the copolymer are principally isolated.  相似文献   

13.
The synthesis of polypentenamer by an electrochemically generated metathesis polymerization catalyst from methylene chloride solution of WCl6 was investigated. The active species formed by electroreduction of this salt under controlled potential of +900 mV at a platinum cathode with an aluminum anode were found to catalyze the ring-opening metathesis polymerization (ROMP) of cyclopentene, monocyclic olefin of relatively low strain, in high yield (89%) and at short period (32 min) under mild conditions. The effect of reaction parameters, e.g., olefin/catalyst ratio, reaction time, electrolysis time, catalyst aging, on the polymerization yield have been studied. The resulting polymer has been characterized by 1H and 13C NMR, IR and gel permeation chromatography (GPC) techniques. Analysis of the polypentenamer microstructure by means of 13C NMR spectroscopy indicates that the polymer contains a mainly trans stereoconfiguration of the double bonds (σc = 0.31) and a slightly blocky distribution (rtrc > 1) of cis and trans double bond dyads (rtrc = 1.44). However, this electrochemical system is reluctant to facilitate the competing vinyl type addition polymerization reactions.  相似文献   

14.
The Ni-methyl complex (η5-C5H5)Ni(CH3)(PPh3) (1) reacted with B(C6F5)3 to give an unstable contact ion-pair complex with a μ-methyl bridge between the Ni and B atoms. Formation of the B-CH3 bond was confirmed by the reaction of this complex with PPh3 to give [(η5-C5H5)Ni(PPh3)2][B(CH3)(C6F5)3] which was structurally characterized. Spontaneous decomposition of the contact ion-pair complex yielded (η5-C5H5)Ni(C6F5)(PPh3) which is very stable and does not show any reactions with norbornene with or without added B(C6F5)3. 19F NMR study showed that the polynorbornene obtained by the catalysis of 1/B(C6F5)3 system has the C6F5 end-group. A series of reactions, which includes CH3/C6F5 exchange between the Ni and B centers with concomitant dissociation of PPh3 to accept coordination of a norbornene monomer, is proposed as the route to active species that can initiate vinyl polymerization of norbornene.  相似文献   

15.
16.
The syntheses and structures of a series of new lanthanide complexes supported by a chelating diamide ligand N,N′-bis(trimethylsilyl)-o-phenylenediamine are described. Anhydrous LnCl3 reacts with Li2[o-(Me3SiN)2C6H4], followed by treatment of NaC5H4Me in 1:1:2 molar ratio to afford the corresponding anionic complexes: {[o-(Me3SiN)2C6H4]Ln(MeC5H4)2}{Li(DME)3} [Ln = Yb (1), Sm (2), Nd(3)] in high yield. These complexes were characterized by elemental analysis, IR and 1H NMR. The molecular structures of 1 and 2 were further determined by X-ray diffraction techniques to be an ion-pair complex composed by an anion [o-(Me3SiN)2C6H4]Ln(MeC5H4)2] and a cation [Li(DME)3]. Complexes 1-3 showed high catalytic activity for the polymerization of methyl methacrylate (MMA) at r.t., giving the syndiotactic-rich polymers with relatively narrow molecular weight distributions (Mw/Mn = 1.64-1.82).  相似文献   

17.
Dichlorobis(3-hydroxi-2-methyl-4-pyrone)Ti(IV) complex was grafted on different inorganic supports, namely different kinds of SiO2, MAO-modified silica, MCM-41, Al2O3, ZrO2 and MgO. The resulting supported catalysts were shown to be active in ethylene polymerization using methylaluminoxane (MAO) as cocatalyst, most of them being even more active that the homogeneous complex. The highest catalyst activities were observed for the Ti complex supported on SiO2 948 activated at 450 °C, MCM-41 and Al2O3.  相似文献   

18.
Crystal structures of Pb(MoO2)2(PO4)2 and Ba(MoO2)2(PO4)2 were determined. Both compounds contain the molybdyl group MoO2. The monoclinic unit-cell parameters are a = 6.353(7), b = 12.289(4), c = 11.800 Å, β = 92°56(6), and Z = 4 for the lead salt and a = 6.383(8), b = 7.142(7), c = 9.953(8) Å, β = 95°46(8), and Z = 2 for the barium salt. P21c is the common space group. The R values are respectively R = 0.027 and R = 0.031 for 1964 and 1714 independent reflections. The frameworks built up by a three-dimensional network of monophosphate PO4 and molybdyl MoO2 groups are similar, characterized mainly by corner-sharing PO4 and MoO6 polyhedra. Two oxygen atoms of each MoO6 group are bonded to the molybdenum atom only as in other molybdyl salts.  相似文献   

19.
p-Tolyl mercury thiocyanate and α-naphthyl mercury thiocyanate react with Co(NCS)22py and form a bimetallic pink compound of formula (py)2(SCN)2Co(NCS)2Hg2R2 (R = p-tolyl and α-naphthyl group). On heating this compound in vacuum a blue compound (SCN)2Co(NCS)2Hg2R2 is formed. Nickel analogues (SCN)2Ni(NCS)2Hg2R2 are formed by direct reaction of p-tolyl or α-naphthyl mercury thiocyanate with nickel thiocyanate. (SCN)2Co(NCS)2Hg2R2 and (SCN)2Ni(NCS)2Hg2R2 act as Lewis acids and form complexes with bases. The Lewis acids and their complexes with various bases have been characterized by elemental analyses, molar conductance, molecular weight, magnetic moment, infrared and electronic spectral studies. These studies reveal that both the Lewis acids are monomers. In (SCN)2Co(NCS)2Hg2R2 the CO(II) has tetrahedral geometry, where as in (SCN)2Ni(NCS)2Hg2R2 the Ni(II) has octahedral geometry through elongated axial bondings with SCN-groups of other molecules. Thiocyanate bridging of the type R-Hg-SCN-M [M = Co(II), Ni(II)] is present in the compounds. Pyridine and dimethylsulphoxide form adducts with these compounds by coordinating at Co(II) or Ni(II). The thiocyanate bridge is retained in these complexes. 2-2′bipyridyl ruptures the thiocyanate bridging in both the Lewis acids and forms cationic-anionic complexes of the type [M(L-L)3][RHg(SCN)2]2. In both the type of complexes Co(II) and Ni(II) possess octahedral environment. The “softness” values have been used in a novel manner in proposing the structure of the complexes.  相似文献   

20.
稀土催化体系Nd(napb)_3-AlEt_2Cl-Al(i-Bu)_3对双烯烃聚合的活性   总被引:1,自引:0,他引:1  
分析了催化剂Nd(naph)_3-AlEt_2Cl-Al(i-Bu)_3三组分反应产物的组成,用动力学方法研究了其催化异戊二烯聚合的活性。催化剂各组分的配比及制备方法对其活性及利用率有显著影响。催化剂的利用率随它使用时浓度的减小而增大,最后达到恒定链终止反应由体系中过量的AlEt_2Cl吸附于活性体而发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号